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Introductory guidance to bio-optical algorithms for use in coastal and 
inland waters 

 
Satellite remote sensing is an increasingly-used and cost-efficient complementary approach to 
traditional environmental monitoring and helps to address environmental issues such as eutrophication 
and climate change (El Serafy et al., 2021). In order to estimate ecological response variables (Adrian et 
al., 2009; Dörnhöfer and Oppelt, 2016) linked to the biogeochemical state of aquatic ecosystems from 
remote-sensed images, we consider two types of algorithms: 1/ Atmospheric correction algorithms to 
remove the effect of the atmosphere from the top-of-the-atmosphere (TOA) signal recorded by the 
remote sensor, and 2/ Bio-optical algorithms to retrieve information about the aquatic ecosystem from 
such data. This section focuses on bio-optical algorithms and is directed towards an audience new to 
the use of satellite data products and product development. More in-depth guidance on algorithm 
selection, use of these products, and product development, intended for a more experienced audience, 
can be found in our companion document. 

 
The development of new satellite data products commonly concentrates on the biophysical, biological, 
and biogeochemical state of aquatic ecosystems as remote sensing can provide information on the 
water level, surface water temperature, ice cover, water colour, and morphometry of coastal and 
inland waters, while more complex models are needed to derive information on additional desirable 
variables (Tab. 1). Bio-optical algorithms are used to translate the optical signal recorded by the remote 
sensor to the bio-optical and biogeochemical variables of interest. 

 
The optical signal recorded by the remote sensor is the result of complex interactions in the 
atmosphere, at the water surface, and in the water column (Fig. 1). Bio-optical algorithms explore these 
interactions and use measurable changes in the colour of the water caused by variations in the 
concentrations of key water quality constituents for their retrievals (IOCCG, 2018). Some of these 
algorithms might translate the optical signal recorded by the remote sensor without the removal of the 
contributions of the atmosphere and air-water interface, while most of them presume these effects 
were at least partially accounted for through the process of atmospheric correction. Partial 
atmospheric correction approaches are exemplified in some commonly used algorithms for the 
detection of cyanobacterial blooms (Binding et al., 2021; Clark et al., 2017; Lunetta et al., 2015; Stumpf 
et al., 2016). Details on atmospheric correction can be found in a future document. 
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Table 1. Remote sensing of aquatic ecosystem properties (aquatic ecosystem properties and response variables 
modified from Adrian et al., 2009 to add sediment loads, remotely sensed response variables modified from 
Dörnhöfer and Oppelt, 2016). Bold printed properties and constituent concentrations determine the underwater 
light field. DOC - Dissolved organic carbon, Kd - Diffuse attenuation coefficient for downwelled light (light 
attenuation), TSM - Total suspended matter concentration, acdom - Coloured dissolved organic matter absorption 
coefficient, Scdom - Slope of the CDOM absorption coefficient, Chla - Chlorophyll-a concentration (most abundant 
algal pigment), PC and PE - Phycocyanin and phycoerythrin concentrations (cyanobacterial pigments indicative of 
harmful algal blooms) 

 
Aquatic ecosystem 
properties 

Response variables Remotely sensed response 
variables 

Example satellite data 
products 

Hydrology Water level Water level Lake water level (ESA Lakes 
CCI project ECV product, CGLS 
water product) 

Temperature Epilimnetic temperature Surface water temperature Lake surface water 
temperature (ESA Lakes CCI 
project ECV product, CGLS 
water product) 

Ice phenology Ice-out, ice duration Ice-out, ice-on and ice-off, ice 
cover 

Lake ice cover (ESA Lakes CCI 
project) 

Transparency and sediment 
loads 

DOC, Kd, Secchi depth 
phenology, euphotic depth, 
TSM, turbidity 

acdom, Scdom, Kd, Secchi depth, 
euphotic depth, TSM, turbidity 

Turbidity derived from  TSM 
(CGLS water product) 

Community structure Algal blooms, changes in 
relative species composition, 
primary productivity, invaders 

Chla, PC, PE, algal biomass, 
trophic state index, primary 
productivity, presence of 
aquatic invasive species 

Trophic state index derived 
from Chla (CGLS water 
product) 

Habitat structure Habitat refuge Lake morphometry, 
bathymetry, Secchi depth, 
emerged, submerged, and 
floating aquatic vegetation, 
substrate 

Lake water extent (ESA Lakes 
CCI project ECV product), 
water bodies (CGLS water 
product) 

 
ESA Lakes CCI project ECV product: European Space Agency Lakes Climate Change Initiative project Essential Climate 
Variable product (https://climate.esa.int/en/projects/lakes/), CGLS water product: Copernicus Global Land Services water 
product (https://land.copernicus.eu/global/themes/water) 

 
Constituent retrieval approaches are typically divided into data-based empirical and semi-empirical 
(Tab. 2) or physics-based semi-analytical and analytical methods (IOCCG, 2018). Empirical algorithms 
may have a bio-optical basis, such as the blue-to-green ratio adopted for open ocean Chla retrievals 
(most algae absorb blue light more strongly than green), or may use implicit approaches based on 
machine learning techniques such as neural network approaches, support vector machines and hybrid 
active learning models (IOCCG, 2018). Machine learning models trained by a radiative transfer model 
might represent intermediate types of models as they provide physics-based output while the ones 
trained with field measurements would represent truly empirical models. Semi-analytical algorithms 
always have a bio-optical basis as they are built on radiative transfer and bio-optical models. Optical  
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water type classifications (Moore et al., 2014, Spyrakos et al., 2017) can support algorithm choice in 
water quality studies as some algorithms are more adapted to certain optical conditions and 
constituent concentration ranges (Neil et al., 2019). 

 

 
 

Figure 1. Conceptual figure of the remote sensing of aquatic ecosystems. The optical signal recorded by the remote 
sensor is the result of complex interactions in the atmosphere, at the water surface, and in the water column. Bio-
optical algorithms aim to characterize key water quality constituents through their absorption and scattering 
properties. 

 
Constituent retrieval strategies can range from the implementation of independent algorithms to series 
of algorithms with substantial computational effort. The computational effort associated with a 
presumably simple index for trophic state assessments is exemplified in the CGLS trophic state index (TSI) 
data products (https://land.copernicus.eu/global/products/lwq). These data products are the result of a 
complex image processing chain with an atmospheric correction of the pre-processed satellite data, 
optical water type classification to select the most appropriate algorithms for constituent retrievals, 
retrieval of Chla with the algorithm selected dependent on the water type class, and the association of 
Chla with the TSI in an additional calculation step. The choice of appropriate algorithms for environmental 
monitoring applications requires the consideration of their needs for field measurements for calibration 
and validation efforts, as well as their accuracy, reliability, maturity, and complexity. 
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Table 2. Advantages and disadvantages of different families of algorithms (description, advantages, and 
disadvantages modified from CEOS, 2018). SIOPs - Specific inherent optical properties (concentration dependent 
properties of key water quality constituents). 

 
Family of algorithms Description Advantages Disadvantages 
Empirical and semi-empirical Use statistical relationships of 

the variables of interest to the 
optical signal recorded by the 
remote sensor, empirical 
algorithms can take many 
inversion approaches from 
univariate or multivariate 
linear regressions to spectral 
decomposition methods to 
estimate these variables, 
semi-empirical algorithms use 
knowledge of the underlying 
physics to select the most 
appropriate single bands 
and/or band combinations 

Method easily interpretable 
without the need to 
understand the underlying 
physical relationships, 
computationally less 
expensive than other 
methods, semi-empirical 
algorithms can partly annul 
some of the contributions of 
the atmosphere and air-water 
interface 

Coincident field 
measurements needed to 
calibrate and validate the 
algorithms either for global-
scale applications or for 
specific locations and 
timeframes, struggle when 
measurements lie outside the 
range upon which the 
pertinent statistical 
relationship was built, difficult 
to adapt to new locations and 
sensors, less reliability in 
retrospective data analysis 
compared to other methods, 
untraceable uncertainties 

Machine learning 
(computationally more 
complex subset of empirical 
methods with physics-based 
and/or empirical elements) 

Use the same mechanism as 
empirical algorithms, can use 
a radiative transfer model, 
bio-optical model, semi-
analytical algorithm, or field 
measurements to build 
statistical relationships of the 
variables of interest to the 
optical signal recorded by the 
remote sensor 

Implementable without the 
need for a priori assumptions 
if trained with field 
measurements, very 
computationally efficient in 
the execution of data 
processing tasks, improved 
accuracy dependent on the 
range and distribution of 
provided training data and 
accounted environmental 
conditions 

Coincident field 
measurements potentially 
needed to calibrate and 
validate the algorithms, less 
easily interpretable, struggle 
when measurements lie 
outside the range of provided 
training data, no mechanistic 
transparency 

Semi-analytical and analytical Use knowledge of the 
underlying physics of light 
transfer in waters and 
analytical inversions to 
simultaneously estimate the 
variables of interest 

Easy to adapt to new locations 
and sensors, more reliability 
in retrospective data analysis 
and under varying recording 
conditions compared to other 
methods, improved accuracy 
for the range of environmental 
impacts accounted, traceable 
uncertainties, mechanistic 
transparency 

Representative SIOPs and 
their ranges needed to 
develop and run most 
algorithms, less easily 
interpretable, 
computationally more 
expensive than other methods 
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