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Foreword

Water lies at the heart of economic and social 
development and is thus a critical factor in 
poverty reduction. Growing economies and 

populations require better water management to keep up 
with the demand for energy and food and to ensure access 
to safe water and adequate sanitation. Twenty-first- 
century growth requires modern tools to help countries to 
understand their water challenges, risks, and options. 

The World Economic Forum’s 2015 Global Risks report 
ranks water crises as the most serious societal risk facing 
the world, given the impacts associated with water scar-
city and overuse. If countries do not manage their endow-
ments well—through improved water infrastructure and 
water management—they will not be prepared for the 
complex challenges of the twenty-first century, will expe-
rience less economic growth, and may lose significant 
development gains made over the past decades. 

While there is a broad consensus about the benefits 
of good water management, putting that knowledge into 
practice is usually easier said than done. To be able to 
make good water decisions, countries need systematic 
ways to measure and monitor changes in water avail-
ability. They need an accurate account of their current 
resources—where, when, and how much—as well as an 
illustration of the potential changes caused by seasonal, 
natural, and climate-induced variability, from rainfall 
and runoff to evaporation and transpiration. In light of 
the harsh realities of climate change, this information is 
needed in larger quantities over broader areas and longer 
time periods than ever before. 

Ground-based (in situ) observation networks are fun-
damental but, in some cases, provide infrequent or sparse 
information over small areas and at a high cost. Particu-
larly in developing countries, such hydrometeorological 
networks have deteriorated over time, at present provid-
ing only limited information for managing compound 
problems. Undoubtedly, developing countries need inno-
vative ways to get more information in an accurate, timely, 
and usable format that builds on their existing infrastruc-
ture for monitoring water resources. 

To compensate for the current information gap, the 
World Bank Group’s Water Global Practice has pulled 
together knowledge on innovative technologies, such as 
viewing water from a distance, mainly through satellite 
platforms, to help countries measure and monitor their 
water resources better. Remote sensing enables cover-
age over large areas and spans of time without heavy field 
personnel requirements, and its accessibility, reliability, 
and accuracy have improved dramatically in recent years. 
While both in situ and remote sensing measurements are 
subject to specific limitations, researchers have developed 
techniques that can combine or correlate data from both 
methods to benefit each other’s strengths. Understanding 
the potential combinations of available options has been 
a challenge for many practitioners. For this reason, Earth 
Observation for Water Resources Management: Current 
Use and Future Opportunities for the Water  Sector aims to 
shed light on the strengths and limitations of remote sens-
ing in order to help specialists to provide decision makers 
with fast and reliable information.

This publication reflects experiences of more than 
40 World Bank Group project leaders and more than 
20  international experts representing space agencies, 
government organizations, and universities from Africa, 
Asia, Europe, South America, and the United States. It also 
integrates a report by the University of Arizona, Tucson, 
which was commissioned for this purpose, and another 
one co-funded with Australia’s national science agency, 
the Commonwealth Scientific and Industrial Research 
Organisation. We hope that the wealth of knowledge pre-
sented in this publication will be useful for many devel-
opment practitioners around the world who are seeking 
practical answers to challenging technical questions 
about water and will help them to benefit from the enor-
mous capabilities of the new tools that are now available.

Jennifer Sara
Senior Director a.i.

Water Global Practice
The World Bank Group
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Preface

BACKGROUND

A Global Initiative on Remote Sensing for 
 Water Resources Management was launched 
in October 2013, financed by the World Bank’s 
Water Partnership Program of the Water Glob-
al Practice. The initiative supports Bank proj-
ect teams through (a) case studies and pilot 
projects in selected countries to serve as the 
basis for the development of approaches and 
procedures that can be replicated in other 
countries facing similar challenges; (b) target-
ed, short interventions of world-class experts 
aimed at advising and providing orientation on 
specific problems related to Bank investment 
operations; and (c) knowledge dissemination, 
as well as advocacy and capacity-building ac-
tivities, in partnership with leading global and 
regional remote sensing and capacity-building 
organizations.

This publication is one product of that initia-
tive, which seeks to improve the quality and ef-
fectiveness of water resources management, 
planning, and project design by developing and 
disseminating, in collaboration with the Bank’s 
operational staff and task team leaders, a clear 

picture of the remote sensing (RS) products  
available today—how they are generated, what 
specific water problems and situations they can 
be applied to, their potential strengths and limi-
tations, how better results could be obtained by 
using them jointly with in situ measurements, 
and how they can be validated and evaluated to 
inform the client better and enhance the Bank’s 
water-related operations.

The use of remote sensing for hydrology 
and water resources operational purposes, 
while not new, is a fast-growing field. The term 
“operational” has many definitions and may be 
viewed from different perspectives. In this 
context, however, the term refers not to the de-
gree of readiness of the system to be used, but 
rather to the usability of products generated by 
that system. In other words, the focus of atten-
tion is not the system itself or the products it 
generates but rather the accuracy, reliability, 
and validity of the system products that will be 
used to make a decision (or alter a past deci-
sion). This decision may be about the planning, 
design, and monitoring or operation of any 
given institutional or physical system. It could 
pertain, for instance, to the selection of crops, 
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the operation of field irrigation systems, or the 
design of a hydraulic infrastructure such as a 
reservoir.  

The scope of this publication is limited to the 
water resources sector and, within that sector, 
to the RS estimation of key variables that form 
the basis of the planning, design, and operation 
of all water resources programs and projects—
precipitation, evapotranspiration, soil moisture, 
vegetation and vegetation cover, groundwater, 
surface water, snow cover, and water quality. 

The RS field is changing rapidly, and this re-
view cannot claim to present more than a 
 picture of the current state of the art. Never-
theless, this picture is a much-needed tool for 
practitioners who have to make operational 
decisions.

CONTENT

In discussing the role of Earth observation 
(EO) in water resources management, this 
publication goes from the general to the par-
ticular, adding more detail at each level. (The 
terms “remote sensing” and “Earth observa-
tion” are used interchangeably in this publica-
tion.) As a framework highlighting why EO 
needs to be considered in water-related activi-
ties, it first gives a broad overview of the major 
global challenges for water resources that exist 
today, outlines the role that remote sensing can 
play in tackling these challenges, and examines 
the significance of water-related projects in 
the Bank’s portfolio and the context in which 
remote sensing has been used to date in World 
Bank initiatives. To give insight into what EO 
can do to support operational decision making 
in water-related projects, the publication con-
tinues with a more in-depth discussion of the 
RS products available today—how they are 
generated, what specific water problems and 
situations they can be applied to, their poten-
tial strengths and limitations, and how they 
can be validated and “ground-truthed,” to in-
form the client better and to enhance water- 
related operations. Finally, as a how-to guide, it 

presents practical guidelines for determining 
(a) whether the use of EO products could be 
worthwhile in a specific situation and (b) how 
results could be improved by using them in 
combination with in situ measurements.

PART I. WATER AND EARTH  
OBSERVATIONS IN THE WORLD 
BANK

Chapter 1 looks briefly at some challenges to 
global water resources that are posed by popu-
lation growth, urbanization, poverty, and other 
problems currently facing many countries. It 
also discusses possible solutions to these chal-
lenges, facilitated by the use of remote sensing, 
in combination with and in support of in situ 
measurements (this mix being especially sig-
nificant when data are scarce). 

Chapter 2 reviews some of the instruments 
that the World Bank uses to help its client 
countries cope with these water challenges: 
the Bank’s water policy and strategy, its Water 
Global Practice, and the characteristics of its 
lending and technical assistance portfolios.

Chapter 3 provides an overview of the 
present use of RS in the Bank’s water-related 
activities, including existing programs that 
Bank staff can tap to obtain specialized assis-
tance for RS applications and products. Chap-
ter 4 discusses ground measurements and RS 
observations, their respective strengths and 
limitations, and the current state and future of 
operational hydrology. 

PART II. EARTH OBSERVATION  
FOR WATER RESOURCES  
MANAGEMENT

Chapter 5 takes the results reported in part I 
and summarizes the main global water issues 
addressed by the World Bank—as reflected in 
its portfolio—and connects them to a particu-
lar set of topics and subtopics defined by the 
Water Partnership Program, which is part of 
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the Bank’s Water Global Practice. This facili-
tates the identification of EO sensors to use, 
often in combination with field measurement 
and modeling. 

Chapter 6 describes eight (hydrometeor-
ogical) variables of key relevance to water 
resources management that can be estimated 
with remote sensing: precipitation, evapo-
transpiration, soil moisture, vegetation and 
land use and land cover, groundwater, surface 
water, snow and ice cover, and water quality, 
as previously stated. It also includes a brief 
summary of the theoretical basis for estimat-
ing these variables through Earth observation, 
a list of the current and near-future sensors 
that can provide such information, and, where 
appropriate, a description of existing data 
products that are generated on a regular basis. 

Chapter 7 provides a series of guidelines that 
project team leaders can use to decide whether 
EO may be useful and, if so, which data sources 
are the most suitable to consider. It also pro-
vides a simple decision-making framework 
that helps to determine, for a given problem, 
how EO products might best be used to gener-
ate the required information and how the EO 
data products with the most appropriate speci-
fications should be selected. Moreover, for 
each water resources application, information 
is presented about accuracy, availability, matu-
rity, complexity, and reliability. 

PART III. VALIDATION OF  
REMOTE SENSING–ESTIMATED  
HYDROMETEOROLOGICAL  
VARIABLES

Part III complements part II and is structured 
around four chapters. Chapter 8 discusses the 
challenges inherent in the validation of RS 
 estimations of hydrometeorological variables  
and explains the methodological  approach fol-
lowed for the validation exercise. Chapter 9 
reports the results of a literature review of val-
idations of estimated precipitation, evapo-
transpiration, soil moisture, snow cover, and 

surface water. Chapter 10 reviews the valida-
tion of streamflow outputs from models using 
RS data as inputs. Chapter 11 summarizes the 
results of this review.

PART IV. CONCLUDING REMARKS

Part IV summarizes the main conclusions and 
recommendations regarding the role of water 
in development and the great potential of RS 
for improving water resources management, 
the main challenges faced when applying it in 
this field, and a word of caution for its sensible 
use. It also reviews the main  elements to con-
sider when deciding whether to use RS in 
 water-related operations and briefly explains 
how the use of RS in water resources manage-
ment could be enhanced through international 
cooperation, ultimately benefiting developing 
countries.

Appendix A provides two examples of the 
use of EO applications in World Bank projects. 
Appendix B provides some notable examples 
of systems that use Earth observation, typi-
cally in combination with ground data and 
modeling, to produce information on water 
resources.

AUDIENCE

The audience for this book includes the client 
countries’ national water resources organiza-
tions, policy makers, and institutions dealing 
with the water resources sector, as well as 
World Bank country directors, sector manag-
ers, and task team leaders. This publication 
will not be equally relevant to all of its  readers 
and some may prefer to skip certain parts. For 
example, policy makers in client countries or 
at the Bank may be interested primarily in the 
discussion about the potential value of using 
RS for key water-related issues and its impor-
tance and relevance for the Bank portfolio. 
Task team leaders may be  interested primarily 
in existing programs that they can tap to 
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 obtain specialized assistance for RS applica-
tions and products, which are described in 
part I. Technically oriented professionals may 
be especially interested in the technical expla-
nation of how RS data products relevant to 
water resources monitoring are derived from 
images obtained by satellite platforms, which 
is provided in part II. At the operational level, 
task team leaders as well as other practitio-
ners may be interested in the decision frame-
work presented in chapter 7 to help them to 
determine, for a given problem, how to use EO 
products to generate the required  information 

and how to select the most suitable EO data 
products for their needs. 

Everybody may be interested in perus-
ing the examples and references presented 
throughout the publication and in the dis-
cussion of the validity of satellite-derived 
values for key hydrometeorological vari-
ables (presented in part III). A big effort 
has been made to integrate the publica-
tion’s technical and operational content in a 
coherent way, in the hope that this approach 
will offer every reader something useful in 
their daily work. 
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Water contributes to all aspects of economic 
and social development. Especially in devel-
oping countries, water supply, sanitation, and 
a healthy environment form the basis of suc-
cessful poverty reduction and shared-growth 
strategies. The use of remote sensing (RS) for 
operational purposes in hydrology and water 
resources, while not new, is a fast-growing 
field. The term “operational,” as used here, 
pertains not to the readiness of RS products 
themselves, but to the actual use of these prod-
ucts when making decisions—a decision about 
the planning, design, and monitoring or 
 operation of any given institutional or physical 
system. It could concern, for instance, the 
selection of crops, the operation of field irriga-
tion systems, or the design of hydraulic infra-
structure such as a reservoir.  

A Global Initiative on Remote Sensing for 
Water Resources Management was launched 
in October 2013, financed by the World 
Bank’s Water Partnership Program of the 
Water Global Practice. It aims, among other 
things, to put together and disseminate, in 
collaboration with the Bank’s operational 

staff and task team leaders as well as external 
partners, a clear picture of the potential role 
of Earth observation (EO)1 in addressing par-
ticular water-related issues. This publication 
is a product of that initiative and aims to 
illustrate the why, what, and how of using EO 
data. 

THE WHY: WATER AND EARTH 
OBSERVATIONS IN THE 
WORLD BANK

Development organizations confront many 
challenges in a rapidly changing world. These 
challenges include, among others, water 
 scarcity as a result of growing demands for 
water, climatic variability and change, causes 
of environmental and hydrologic change 
other than climate, the occurrence of extreme 
events (floods and droughts), complex issues 
related to the conjunctive use of surface 
water and groundwater, food and energy 
dynamics, growth and environmental prob-
lems, as well as governance and transbound-
ary issues. 

EXECUTIVE SUMMARY



2 | E A R T H  O B S E R V A T I O N  F O R  W A T E R  R E S O U R C E S  M A N A G E M E N T

observations has been in decline globally since 
the 1980s. Among the many reasons for this 
decline is that, particularly in developing 
regions, real-time, ground-based measure-
ments have been marked by relative scarcity, 
poor accessibility, deficient quality control, and 
lack of availability and sharing options. 

Remote sensing plays an increasingly impor-
tant role in providing the information needed 
to confront key water challenges. In poorly 
gauged basins, at time intervals of several days, 
real-time satellite estimates of precipitation 
and derived streamflow forecasts can help 
managers to allocate water among users and to 
operate reservoirs more efficiently. In large riv-
ers, data on river and lake surface elevation can 
be used to estimate flow in the upper parts of 
the basin and to predict flow downstream. Soil 
moisture observations may give insight into 
how much irrigation is needed, as well as help 
to forecast and monitor drought conditions. 
Water managers in snow-dominated areas can 
use estimates of snow cover and snow water 
equivalent to assess how much water is in stor-
age and determine what watersheds it is 
stored in. 

Remote sensing also enables the monitoring 
of many parameters of surface water quality to 
assess the repercussions of river basin manage-
ment policies, land use practices, and non-
point-source pollution as well as the likelihood 
of algal blooms and other threats to the quality 
of water supply systems. 

In situations involving the food-water-
energy nexus, governance and adaptive man-
agement, or transboundary settings, remote 
sensing may help decision makers to adjust 
past policies or facilitate early warnings by 
providing information from parts of a basin 
lying outside a nation’s borders.

In collaboration with space agencies in 
Europe, Japan, and the United States, the 
World Bank has increasingly been using RS 
data, as summarized in box ES.1.

Despite the growing demand for RS data, the 
percentage of projects in the portfolio that have 

The successful tackling of issues such as these 
lays the foundation for sustainable development 
and poverty reduction strategies that organiza-
tions such as the World Bank help  client coun-
tries to develop. A review of the Bank’s 
water-related projects shows that, over the last 
five years, the share of these kinds of projects in 
the total portfolio has almost  doubled—reaching 
about 18 percent. Nearly 800 projects with 
water-related themes were approved between 
fiscal year 2002 and fiscal year 2012. Of these, 
the majority dealt with water supply and sanita-
tion or with flood protection. Projects on irriga-
tion and drainage and on hydropower ranked 
second and third, respectively. 

These and other water-related projects, at 
some point and in one way or another, undoubt-
edly needed data on precipitation, temperature, 
evapotranspiration, normalized difference veg-
etation index, streamflow, soil moisture, wind 
speed, groundwater recharge, groundwater 
level, surface water level, snow or ice cover, 
snow or ice water equivalent, pumping and 
groundwater change, land subsidence evalua-
tions, water surface elevation, and water qual-
ity. Traditionally, ground observations have 
provided these kinds of data. However, the 
number of ground hydrometeorological 

Remote Sensing in World Bank Water-Related Projects

BOX ES.1

In World Bank water-related projects, the following sectors and themes 
have been the highest users of remote sensing:

• Flood protection and general water, sanitation, and flood protec-
tion (more than 50 percent of projects using RS) 

• Irrigation and drainage (25 percent) 

• Climate change related (12 percent)

• Natural disaster management (17 percent)

In projects with a large water resources management component 
(55  percent), remote sensing has been used primarily in lending operations 
(46 percent) and less frequently in advisory and analytical support (9 per-
cent of projects using RS).
Note: Sectors and themes are not mutually exclusive.
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Because of its fine-scale spatial and temporal 
variability, monitoring precipitation in large 
areas challenges field-based measurement 
 networks. Gauge density is not the only factor 
affecting when and where satellite data are 
expected to improve the rainfall estimation; 
other factors include the type of topography 
and rainfall. However, in large parts of the 
globe, rain gauge networks are sparse, and 
available evidence increasingly suggests that 
satellite-derived precipitation, together with 
weather model reanalysis estimates, can pro-
vide highly valuable rainfall estimates and 
 narrow the information gap.

Evapotranspiration involves two processes—
evaporation and transpiration—that occur 
simultaneously and are therefore difficult to 
distinguish one from the other. Evaporation is 
the change from a liquid to a gas. It may occur 
from the Earth’s surface (for example, the soil, a 
water body, or other type of surface), through 
plant leaves (transpiration), and from rainfall on 
the surface of the leaves (interception). Actual 
evapotranspiration is difficult to measure, let 
alone estimate accurately, both spatially and 
temporally over large areas. This is not the case 
of potential evapotranspiration, which can be 
readily calculated using commonly measured 
hydrometeorological variables. 

Actual evapotranspiration can be estimated 
through three methods: (a) empirical  methods, 
(b) energy balance methods, and (c) the 
Penman-Monteith method. Each has specific 
strengths and weaknesses. These methods 
form the starting point of numerous EO-based 
implementation models. While it is unlikely 
that any single approach will be best suited to 
estimating actual evapotranspiration in every 
situation, a common issue is having a system in 
place for robust and repeatable assessment of 
the models. While EO-based models of actual 
evapotranspiration may still be used for places 
where no ground measurements exist, if their 
reliability (probability of errors) cannot be 
assessed, their suitability for management 
purposes may not be known with certainty.

used these technologies is still low. There is 
great potential for their use in operations 
related to climate variability and change, agri-
cultural systems, and water systems planning 
and management. Actual or planned uses of RS 
products vary from the evaluation of a project’s 
impact on agricultural water management, 
agricultural water-saving measures, and sup-
port services to the provision of input for mod-
ern, basin-wide water resources information 
systems; feasibility studies; basin planning, 
monitoring, and forecasting; transboundary 
options for mitigating flood risks; investment 
planning and basin decision support systems; 
and institutional or community planning 
frameworks for addressing environmental and 
social issues.

The huge potential of RS applications has 
created the need for an easily accessible com-
pilation of available products and their suit-
ability for various water resource management 
needs as well as for guidelines to support deci-
sions regarding when and how to use them 
more effectively for operational purposes.

THE WHAT: EARTH OBSERVATION 
FOR WATER RESOURCES 
MANAGEMENT

Some key variables are usually involved in 
these activities and, given the present state-of-
the-art technology, may be estimated using 
remote sensing. These variables are precipita-
tion, evapotranspiration, soil moisture, vegeta-
tion and vegetation cover, groundwater, level 
and extent of surface water,2 snow cover, and 
optical water quality. This publication first 
identifies the minimum spatial and temporal 
resolution requirements for these types of vari-
ables and subsequently links them to relevant 
water activities. 

Precipitation is the process by which water 
returns from the atmosphere to the Earth’s 
surface in liquid form (rain), in solid form 
(snow or hail), or in combined form (sleet). 
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distinguishing between structurally distinct 
types of vegetation.

Groundwater is the water contained in the 
saturated zone—the subsurface volume below 
the water table—where water fills the cracks 
and pores of rock, sediment, and soil. Ground-
water is a critical source of water for human 
consumption and agriculture, especially where 
surface water is scarce or polluted. It also mod-
erates streamflow, producing the longer-term 
base flow component of total flows, which 
decouples flows somewhat from the variability 
inherent in the climatic drivers of streamflow. 
As groundwater lies below the land surface, 
there are currently no techniques for using 
Earth observation to determine the groundwa-
ter level directly, so the use of remote sensing 
here is inferential and has limitations. The 
main indirect techniques used are satellite 
gravity field mapping (gravimetry) and radar 
interferometry. 

Surface water, as treated here, refers to nat-
ural or man-made reservoirs, very wide rivers, 
and water accumulation caused by flooding, 
which can range from small overbank floods 
near water streams to very large floods cover-
ing hundreds of square kilometers. Measuring 
surface water elevation using EO technology 
can provide estimates of changes in total water 
volume in reservoirs and wetlands and also be 
used to estimate river discharge, although this 
is currently only possible in wide rivers (that is, 
rivers several hundreds of meters wide). A 
large number of algorithms exist for mapping 
surface water areas. One major disadvantage of 
using optical imagery is that the images are 
subject to cloud contamination. Radar and pas-
sive microwave imagery is not affected by 
clouds or water vapor and therefore can pro-
vide useful information on surface water under 
clouds.

Snow cover exists where snow accumula-
tion is sufficient for the land surface to have a 
reasonably continuous layer of snow. As snow 
contains freshwater, meltwater from snow 
cover is an important source of water for 

Soil moisture is defined as the amount of 
water in the uppermost layers of the soil col-
umn, where the definition of “uppermost” 
varies with sensing technology or modeling 
application and can vary from the top 1 centi-
meter to the first 1 meter of soil or more. The 
monitoring of soil moisture has advanced 
considerably over the last decade, with inno-
vative ground- and satellite-based technolo-
gies for monitoring large areas. Global 
monitoring of soil moisture is only achievable 
with satellite Earth observation in conjunc-
tion with field-based soil moisture monitor-
ing networks. Satellite soil moisture sensing 
technology is based on either radiometric 
measurements of emissions from the soil 
(passive microwave approach) or radar tech-
nology that transmits a pulse of electromag-
netic radiation to the Earth’s surface and 
measures the backscattered signal (active 
approach). Objective assessments comparing 
the accuracy of satellite estimates of soil 
moisture with the accuracy of surface mea-
surements are necessary to gain the user com-
munity’s acceptance of the products and often 
involve evaluations against field-based soil 
moisture measurements.

Vegetation is the collective term for the cov-
erage of plants across land areas, vegetation 
attributes, and processes related to the prop-
erties and functioning of those plants when 
considered at the landscape scale. Vegetation 
plays an important role in the hydrologic 
cycle—partitioning precipitation between 
evaporation and runoff. A large percentage of 
terrestrial evaporation is transpired by vegeta-
tion. It can be characterized quantitatively, 
using measures of height, canopy and stem 
density, leaf area, and the like, or qualitatively, 
as classes of vegetation or types of cover, such 
as forest, croplands, and tundra. Classes of 
vegetation cover are identified using combina-
tions of remotely sensed variables—often com-
bined with ancillary data such as climate and 
land use maps—and field observations. RS esti-
mates of vegetation height and biomass help in 
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can be obtained through Earth observation are 
classified according to their potential useful-
ness. In addition, the most appropriate spatial 
and temporal resolutions for each variable are 
listed. 

THE HOW: PRACTICAL GUIDELINES 
FOR DECIDING ON THE USE OF EO 
PRODUCTS

For many potential applications, the use of EO 
data products will immediately and obviously 
be useful for improving water resource man-
agement and water monitoring. Yet in other 
cases, guidance may be needed to decide 
whether Earth observation could be useful 
and, if so, which data sources would be the 
most suitable to consider. For those cases, a 
simple decision framework is included to help 
to determine, for a given issue, (a) the optimum 
use of EO products, that is, those that generate 
the required information, and (b) the optimum 
selection method, that is, the one that ensures 
the EO data products with the most appropri-
ate specifications are chosen. For the applica-
tion to each specific area of water resources 
management, the issues of accuracy, availabil-
ity, maturity, complexity, and reliability should 

consumption, irrigation, and power generation 
in many parts of the globe. In the visible wave-
lengths, snow is generally highly reflective 
(that is, characterized by a high albedo), which 
makes it relatively easy to detect, as it contrasts 
with the surrounding landscape. The areal 
extent of snow cover can be detected using 
optical, near infrared, and microwave sensors 
or a combination of these. Active and passive 
microwave sensors are the primary means of 
detecting snow depth, snow water equivalent, 
and snow wetness.

Water quality refers to the physical, chemi-
cal, and biological content of water and may 
vary geographically and seasonally, irrespec-
tive of the presence of specific pollution 
sources. Earth observation can only directly 
assess water quality parameters—including 
many chemical compounds, such as nutri-
ents—if they have a direct expression in the 
optical response of the water body. Only a sub-
set of these variables, often referred to as opti-
cal water quality variables, can be assessed 
directly through Earth observation (box ES.2). 

In some cases, nonoptical products may be 
estimated through inference, proxy relation-
ships, or data assimilation with remotely 
sensed optical properties of products such as 
nitrogen, phosphate, organic and inorganic 
micropollutants, and dissolved oxygen. How-
ever, these relationships are stochastic, may 
not be causal, and may have a limited range of 
validity. By making use of the combined infor-
mation in directly measurable optical proper-
ties, it is possible to derive information about 
eutrophication, environmental flows, and car-
bon and primary productivity.

Detailed information about the various sen-
sors is summarized in tables in the main text. 
These tables provide an overview of EO capa-
bilities regarding estimation of the eight vari-
ables of interest previously mentioned. The 
satellite sensors are described in terms of their 
spectral, radiometric, and temporal character-
istics. For each pertinent water resource man-
agement activity, the relevant variables that 

Six Optical Water Quality Variables That Can Be 
Derived from EO Data

BOX ES.2

Directly assessed:

• Chlorophyll 

• Cyanobacterial pigments 

• Colored dissolved organic matter 

• Total suspended matter

Indirectly assessed:

• Vertical attenuation of light coefficient 

• Turbidity/Secchi disk transparency
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v

Questions to Aid in Deciding Whether to Use Earth 
Observation for Water Resources Management

BOX ES.3

1. Define the nature of the water resource management problem.

• What questions need to be answered?

• What policies or regulations drive these questions?

• Who are the stakeholders and beneficiaries of a solution to the 
problem?

2.  Explore the capacity of sustaining and maintaining decision support 
and monitoring programs.

• Is local capability available and adequate?

• Is training needed?

• Are local and international resources required?

3. Define the status of existing data and observation networks.

• What metering is currently available? 

• What is the condition of the data networks? 

• Are there any impediments to sharing, collating, and archiving the 
data (for example, transboundary issues)?

• What, if anything, has been done in the past to address the issues 
at hand? 

• Has any monitoring or modeling been conducted? 

4. Evaluate the adequacy of field observations.

• Are the observations well defined?

• Are the spatial density, frequency, continuity, and period of inter-
est detailed?

• Are observations accurate and available?

be duly considered. The main questions to ask 
are presented in box ES.3.

Information that helps to answer these 
questions—as a basis for determining whether 
specific EO products meet the data require-
ments of the water resources management 
problem under consideration—is provided in 
tables in the main text. The step-by-step pro-
cedure is shown in the simplified diagram in 
figure ES.1.

The validity or ground truth3 of EO prod-
ucts is also an important characteristic to be 
taken into account when considering their use. 
Yet, while numerous reports and publications 
on hydrologic applications of remote sensing 
discuss available tools (products and models), 

few include validation of the results of those 
tools. Still, some reports on validation efforts 
can be found in the literature. 

It is presently believed that the combined 
use of EO and field data generally provides the 
best information outcomes, based on a review 
of the literature on the validation of EO- 
estimated hydrometeorological variables and 
the following considerations: (a) overall satel-
lite estimations are well correlated with 
ground observations; (b) despite these strong 
correlations, satellite estimates are relatively 
uncertain; (c) despite the uncertainties inher-
ent in in situ measurements, it is believed that 
the measurements of an EO data product will 
rarely be as accurate as those of an equivalent 
field measurement; and (d) despite the gener-
ally lower accuracy, EO products still are an 
important alternative data source because EO 
imagery can provide information with greater 
spatial extent, spatial density, and temporal 
frequency than most field-based (point-based) 
observation networks. 

CONCLUDING REMARKS

Good water resources management and plan-
ning are essential to sustain economic and 
human development. Especially in developing 
nations, there is a need to bridge the gap between 
existing technologies and operational applica-
tions in support of the planning, design, 
 operation, and management of water resources. 
There is great potential for space-based Earth 
observation to enhance the capability to moni-
tor the Earth’s vital water resources, especially 
in data-sparse regions of the globe. Despite this 
potential, EO data products are currently 
underused in water resources management. 

Practitioners, especially in developing 
countries, would benefit from efforts to bridge 
the gap between scientific-academic and real-
world uses of RS technology. Factors to con-
sider are the cost of implementation, financial 
support, technical orientation, and definition 
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Figure ES.1 Summary of Guidelines for Determining Whether to Use EO 
Products

Yes

Yes

YesNo

No

No

Define the nature of the
WRM problem

Decision Tree Questions/Rationale

Define the status of
existing observation

networks

Determine minimum
required data
characteristics

Do you need
to use Earth observation

data?

Can EO
potentially provide the

required data?

Can the EO
product meet the data

requirements?

Do not
use EO

Use EO
product(s)

WRM problem to be solved?
Institutions? Relevant
stakeholders?

Conditions of data network,
data sharing possibility, existing
monitoring and models, etc.?

Adequacy of field
observations?

EO potential use?

EO product suitability?
Spatial resolution?
Temporal resolution
(revisit frequency)?
Record length?

In situ data requirements?
Reliability?
Accuracy?
Maturity?
Complexity?

Note: WRM = water resources management; EO = Earth observation.

of clear procedures and criteria to assess the 
usability of RS products for decision making 
and planning conditioned by uncertainty 
(error estimates), accuracy (characterization 
of errors), precision (spatial and temporal res-
olution), timeliness, and validity of the data. A 
good understanding of the potential and limi-
tations of in situ measurements and EO-
derived data can inform the design of special 
tools for specific purposes. Thus communica-
tion between scientists, researchers, and prac-
titioners should be a two-way street.

NOTES

 1. The terms “remote sensing” and “Earth 
 observation” are used interchangeably in this 
publication.

 2. Surface water, as used in this publication, refers 
to water that is on the Earth’s surface, such as 
in a stream, river, lake, reservoir, wetland, or 
flooded area.

 3. In remote sensing, ground truth refers to 
 information collected on location. Ground truth 
allows image data to be related to real features 
and materials on the ground. The collection of 
 ground-truth data enables calibration of RS data 
and aids in the interpretation and analysis of 
what is being sensed.





for development. Water thus is a fundamental input 
for sustainable economic growth.

While the World Bank has maintained its mission 
of reducing global poverty through economic devel-
opment, the nature of the work it undertakes to fulfill 
that mission has changed over the decades of its exis-
tence. The scope of the problems that the Bank has to 
grapple with has expanded significantly, particularly 
in the realm of sustainable development, and today 
includes challenges related to climate change, 
resource depletion, natural disasters, and urbaniza-
tion. These challenges require the collection and pro-
cessing of data of much larger orders of magnitude 
than the poverty challenge alone requires. Under 
these circumstances, the Bank has started tapping 
into remote sensing techniques as a means of acquir-
ing the extensive data needed to advance its goals.

OVERVIEW

Water is a key driver of economic and social develop-
ment as well as of poverty reduction. Growing econ-
omies and populations need more water resources to 
sustain economic activity and provide greater access 
to drinking water and improved sanitation, generate 
renewable energy, or increase sustainable food pro-
duction. While water can be catalytic for economic 
growth and development, too much or too little 
water can also be a constraint if countries are unable 
to prepare for climate-related hazards.

As water is present in most parts of the economy, 
better water management is critical to helping peo-
ple, economies, and ecosystems to thrive, reduce 
poverty, and sustain prosperity. Better water 
resources management also requires institutional 
capacity and enabling environments in which stake-
holders participate in finding integrated solutions 

Aleix Serrat-Capdevila, Danielle A. García Ramírez, and Noosha Tayebi 

PART I

Water and Earth Observations in 
the World Bank
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INTRODUCTION

Over the past century, water resources man-
agement has increased in complexity as tech-
nological advances of the Industrial Revolution 
have allowed humans to intervene in and 
modify the hydrologic cycle in unprecedented 
ways. In many cases, this has been done with-
out acknowledging the environmental and 
social costs, without a long-term vision for 
planning and management, and without any 
regulation or oversight. In addition, a good 
physical understanding of the impact of 
human intervention has often been lacking. 
Population and economic growth, as well as 
changes in land use and global dynamics, have 
pushed the use of water resources beyond the 
limits of long-term sustainability in many 
regions of the world. Several water resources 
problems and challenges have taken or are 
taking center stage in the sustainable manage-
ment arena. 

The analysis of the World Bank project 
portfolio has identified several water-related 
challenges to sustainable development. These 

challenges have been grouped under represen-
tative themes deemed especially relevant to 
reducing poverty and promoting shared 
growth—the overarching issues deserving 
attention. They are the scarcity and quality of 
water; the impacts of climate change and vari-
ability as well as changes not related to climate; 
the management of floods and droughts; the 
management of the conjunctive use of surface 
water and groundwater; the complex links 
between water, energy, and food production; 
the need for alternative models of economic 
growth (such as green growth); financial chal-
lenges in the provision of water and sanitation 
services; the need for better governance; and 
improved cooperation in the management of 
transboundary waters. 

This chapter summarizes the key chal-
lenges that undermine the optimal design, 
use, and management of water and the socio-
ecological systems that provide hydrologic 
services beneficial to humans. These chal-
lenges are all related to the rational use of 
water resources and the goals of environmen-
tal sustainability, economic efficiency, and 

Key Global Water Challenges 
and the Role of Remote Sensing 

CHAPTER 1

  11



12  |  P A R T  I :  W A T e R  A n d  e A R T h  O b s e R v A T I O n s  I n  T h e  W O R l d  b A n k

subsidies being given to groundwater-irri-
gated agriculture); (e) lack of institutional 
frameworks and enforcement and low pri-
ority and visibility in political agendas; (f ) 
lack of information and proper education 
regarding the impacts of unsustainable use 
and poor management practices; or (g) a 
combination of all of the above. Effective 
management of demand can often sig-
nificantly reduce water scarcity through 
improved technology and improved effi-
ciency of water systems. At the same time, 
very efficient water use and overallocation 
of existing water resources may lead to 
brittle or nonresilient systems.

Water scarcity is sometimes so severe that there 
is not even enough water to satisfy basic human 
and animal needs, as is the case in some parts of 
the Sahel, where it often results in widespread 
hunger. In places where famine is tied directly 
to local food production through the availability 
of rainfall and water in small water bodies 
(springs, holes, watercourses), real-time moni-
toring of rainfall and hydrology is essential to 
prepare mitigation measures for the most 
exposed and vulnerable populations. 

Population growth, irrigation, and urban-
ization are by far the most significant stress-
ors on water management. Urban centers in 
developing nations are among the fastest-
growing areas (Africa has an annual growth 
rate of 3.9 percent—the highest rate of urban 
population growth in the world). Growing 
demands for water, changing land use cover 
and availability of water resources, as well as 
deteriorating water quality (due to new eco-
nomic activities and poor sanitation) are 
becoming major challenges for sustainable 
water resources management and, hence, for 
sustainable economic growth.

A good physical understanding of resource 
dynamics through time and space and good 
near-real-time monitoring of hydrologic 
balances are essential to the proper manage-
ment of water as a scarce resource. This 

social equity. Each section deals with a spe-
cific challenge, reviewing the role of remote 
sensing (RS) observations in addressing that 
challenge and discussing possible approaches 
and ways to address it. 

WATER SCARCITY

Water scarcity is a human-centered concept 
resulting when overall demand for water 
exceeds supply. It often is a problem not only of 
supply, but also of demand; it affects the Sahel 
and Bangladesh, but also the Colorado River 
basin. Water scarcity arises when water supply 
and demand are out of balance: 

• Limited supply. The supply of water can be 
low due to either low hydrologic availabil-
ity (in arid and semiarid areas) or the lack 
of integrated systems to buffer seasonal 
or interannual variability (lack of access 
to water in reservoirs or aquifers or lack 
of sustainable and reliable mechanisms to 
extract it). The overreliance on a single 
source of water may increase the vulner-
ability of supply systems. In the Indus and 
Ganges basins, overreliance on a single 
source can be caused by the lack of proper 
management of conjunctive use, leading 
to a decline in aquifer levels, and by the 
struggle of poor rural households to access 
water when pumping costs rise or deeper 
wells are needed. The notion of water qual-
ity should also be considered, as polluted 
water is not a usable resource.

• Unlimited demand. In most instances, 
water scarcity is due to (a) low agricultural 
efficiencies, as well as municipal, indus-
trial, and conveyance inefficiencies; (b) no 
or lack of enforcement of limits on water 
allocations or regulations on groundwater 
pumping or the allocation of resources (to 
prevent overallocation); (c) lack of proper 
pricing of costs associated with water use; 
(d) subsidies on energy costs (the main 
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• In large rivers, altimeter data of river sur-
faces can be used to estimate flow in the 
upper parts of the basin and to predict 
downstream flows, issue flood warnings, 
and manage water allocation and operations 
(see Hossain et al. 2014). 

• Soil moisture observations may provide 
insights into how much irrigation is needed 
as well as help to correct missed events or 
false detections of satellite precipitation 
products and to assess flood risk. 

• ET estimates may help water managers 
to understand the dynamics of ground-
water pumping in agricultural areas and 
the impact of water policies implemented 
and changes made in energy subsidies for 
pumping. More generally, they can be used 
in combination with ground data to under-
stand efficiencies in water use, aimed at 
decreasing the rate of nonbeneficial and 
increasing the productivity of beneficial 
evapotranspiration (Wu et al. 2013).

• The Satellite Water Monitoring and Flow 
Forecasting System for the Yellow River—a 
Sino-Dutch cooperation project—is a good 
example of integrated efforts using RS data 
(from hourly visual and thermal infrared 
bands) to support river basin manage-
ment, including energy and water balance, 
drought monitoring and early warning, 
and flow and flood forecasting (Rosema 
et al. 2008).

WATER QUALITY

Water quality issues are broad and differ 
widely, depending on the specific context 
and setting. Water quality issues in surface 
and groundwater can originate from (a) the 
lack of or poor-quality water supply and san-
itation services, (b) land use practices, 
(c) industrial activities, and (d) management 
issues involving natural contaminants. The 
deteriorating quality of rivers and aquifers 

understanding forms the basis for addressing 
all of the water resource challenges described 
in this chapter. Coping with climate and water 
variability requires good monitoring and 
accounting tools, to help users to prioritize 
and curb demand ahead of time in dry years 
and to consume more wisely in wet years. A 
better quantification of hydrologic fluxes and 
storages will help to enhance water security—
and thus the health and well-being of 
 populations—by providing more reliable 
information on water availability and use. 
Remote  sensing—also called Earth observa-
tion (EO)—allows the measurement of many 
hydrometeorological and environmental vari-
ables as well as the identification of many 
types of land use cover. Some of the relevant 
variables are precipitation, soil moisture, ter-
restrial water storage (including vadose zone 
water and groundwater), evapotranspiration 
(ET), normalized difference vegetation index 
(NDVI), surface water elevation, and some 
water quality variables. Good monitoring of 
hydrometeorological fluxes and their parti-
tioning will enable integrated, flexible water 
management approaches that take advantage 
of diverse water resources and potential feed-
backs between system components. 

Remote sensing can provide spatially dis-
tributed and timely observations that may 
allow better forecasting and more efficient use 
of water. For instance, 

• Operational managers in snow-dominated 
areas can use estimates of snow cover1 and 
snow water equivalent to know how much 
water is in storage and in what watersheds 
it is stored. 

• In poorly gauged basins with times of con-
centration of many days, real-time satel-
lite estimates of precipitation and derived 
streamflow forecasts can help manag-
ers to allocate water among users and to 
operate reservoirs more efficiently, taking 
into account how much water the river is 
expected to bring in the following days. 
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origin, it is human induced. Poor or deficient 
management can contaminate large ground-
water reservoirs by drawing in naturally occur-
ring pollutants, including salt, fluoride, arsenic, 
and radioactivity.

Pharmaceuticals originating in wastewa-
ter are becoming one of the main challenges 
in developed countries. However, this issue is 
not receiving much attention in developing 
countries. Those contaminants are difficult to 
detect and expensive to quantify; moreover, 
their effect is not easily neutralized through 
special treatment. There is still only limited 
understanding of their impact on human and 
environmental health, although significant 
hormonal changes in some aquatic species 
have been observed, among other effects. 

In addition to monitoring fluxes and stor-
age levels of water, remote sensing also offers 
the possibility of monitoring many parameters 
of water quality. This makes it possible to fol-
low water quality in time and space across vast 
regions, significantly complementing costly 
and limited field-point measurements. The 
water quality variables that can be assessed 
with remote sensing are temperature, chloro-
phyll (an indicator of phytoplankton biomass, 
trophic, and nutrient status and the most 
widely used index of water quality and nutri-
ent status globally), cyano-phycocyanin and 
cyano-phycoerythrin (indicators of cyanobac-
terial biomass, which are common in harmful 
and toxic algal blooms), colored dissolved 
organic matter (the optically measurable com-
ponent of dissolved organic matter in the 
water column, sometimes used as an indicator 
of organic matter and aquatic carbon), and 
total suspended matter and non-algal particu-
late matter (important for assessing the  quality 
of drinking water and controlling the light in 
aquatic environments). 

Direct applications of remote sensing for 
management include the following:

• Monitoring water quality to assess the 
impacts of river basin management policies 

worldwide can also result from a combina-
tion of these  factors.

In many regions of the world, urban and 
periurban aquifers are polluted due to the com-
bination of inadequate treatment of  sanitation 
and wastewater and a range of  economic activi-
ties. Such contamination  exacerbates the lack 
of access to clean water, which is itself a direct 
cause of poor health and malnutrition (diar-
rhea is one of the main causes of malnutrition). 
Lack of access to drinking water also has an 
impact on education (as children have to help 
their parents collect water) and poverty. Thus 
water supply and sanitation are essential com-
ponents of integrated approaches to reducing 
malnutrition and poverty. 

Land use practices such as deforestation 
and farming can severely affect the quality of 
surface water and groundwater. While the 
disruption of vegetation cover and soil prac-
tices can have an impact on total dissolved 
solids and turbidity, the use of fertilizers for 
agriculture can lead to eutrophication and 
hypoxia in surface water systems as well as to 
severely polluted aquifers. The use of chemi-
cal pesticides can also cause imbalances in 
natural  trophic chains. 

Industrial activities are a common source of 
contamination, especially in countries that do 
not have well-established regulatory and 
enforcement mechanisms. Polluting activities 
may include mining and metallurgy, process-
ing and manufacturing industries, and the like.

Water quality issues can also stem from 
overexploitation and lack of management of 
water bodies with different natural character-
istics, sometimes bringing about saline intru-
sion in coastal aquifers or upconing of saline 
groundwater below freshwater aquifers. These 
water quality issues, in turn, lead to water scar-
city and may compromise human health. For 
instance, they are responsible for the naturally 
occurring high concentrations of arsenic in the 
groundwater of floodplains and deltas or other 
“geogenic” elements such as fluoride or ura-
nium. While this kind of pollution has a natural 
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monthly and annual levels (Anagnostopoulos 
et al. 2010), and consequent hydrologic simula-
tions alone are not fit for planning and design 
purposes and likewise unsuitable for forecasts 
and reservoir operations (Kundzewicz and 
Stakhiv 2010; Stakhiv 2010). However, GCMs 
are designed and intended to project future 
changes in climate and not to predict the 
weather, two different tasks whose boundaries 
are often blurred in debates regarding GCM 
accuracy. 

Should an attempt be made to use GCM 
results to derive new flood frequencies at an 
hourly rate for specific basins? In the South-
western United States, several studies have 
found that, while average precipitation will 
decrease, precipitation extremes will increase 
(Domínguez et  al. 2012; Emori and Brown 
2005; Meehl et  al. 2007). While GCMs and 
regional climate models may provide useful 
projections of changes in the frequency and 
magnitude of extreme events, the uncertainties 
may be too large to inform design investments. 

At the same time, climate impact studies 
have a more straightforward benefit for man-
agement and planning that is related to changes 
in averages (for which climate model projec-
tions seem to be less uncertain) and the long-
term availability of water. Consequently, if 
changes in meteorological variables affect the 
mean states of hydrologic variables, efforts 
should be directed at quantifying these average 
changes (using GCMs) and the envelope of 
uncertainty that contains them (using tradi-
tional and new approaches), so that water 
managers and decision makers can adapt to 
changes in water availability (Serrat-Capdevila 
and Mishra 2012).

While precipitation projections are uncertain 
and sometimes contradictory, there is little dis-
agreement over the fact that the Earth’s atmo-
sphere is warming and that temperatures will 
continue to rise. One can easily expect that in 
glacier-dominated regimes, flows could increase 
in the short term, which is associated with a 
period of progressive glacier melting. In the 

and land use practices on the environment 
and surface water. The spatial dimension 
of this monitoring capability is important.

• Monitoring the likelihood of algal blooms 
and other water quality threats to water 
supply systems.

Dekker and Hestir (2012) provide a good over-
view of the state of the art, reporting that the 
main impediment to making RS monitoring 
operational is the lack of bio-optical informa-
tion for parameterizing and validating remotely 
sensed information on water quality.

IMPACTS OF GLOBAL CHANGE

While it is important to understand the under-
lying causes and future projections of climate 
variability and change, many of the impacts of 
climate change on hydrology and climate 
 variability may be difficult to distinguish from 
 normal climate variability. The signal of 
anthropogenic climate change is expected to 
increase gradually, as is its impact, but its dis-
tribution across the globe will be uneven and 
will depend on latitude and geography. 

Global climate models (GCMs), also known 
as general circulation models, project changes 
in precipitation and temperature. Beyond a 
research exercise, in what ways can impact 
studies of climate variability and change 
inform management and planning decisions? 
What is the take-home message for decision 
makers? Leaving aside the debate on how 
GCM data should be used, studies of the 
impact of climate change on water resources 
can potentially be applied to two realms: (a) 
planning and design efforts to cope with 
extreme events in the upper end of the spec-
trum (taking into account their return peri-
ods) and (b) management aspects depending 
on average water availability over the next 
decades. 

Even when aggregated over spatial scales, 
GCM results contain a lot of uncertainty at the 
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floods, mean flows, and droughts is widely rec-
ognized. Dissecting the various contributions 
to hydrologic change from natural climatic 
drivers, as well as from land use change, vege-
tation cover change, and anthropogenic 
increases in atmospheric concentrations of 
carbon dioxide, is very challenging.

Nonclimatic drivers of change in socioeco-
logical systems such as the global economy, 
combined with natural climatic variability, 
can change social vulnerabilities and power 
relationships. Edwards (2006) argues that 
globalization has accentuated, rather than 
reduced, national and regional differences. 
Sub-Saharan Africa, in particular, has become 
increasingly marginalized in terms of benefit-
ing from the global economy (O’Brien and 
Leichenko 2000). Population growth, rural to 
urban migration, and land and ecosystem deg-
radation and deforestation in developing 
regions are all sources of change in hydrologic 
and water demand.

Given the extent of human-induced global 
environmental change, current climate projec-
tions, and the expected impacts on hydrology, 
water resources, glaciers, and snow and land 
cover, Earth observations are sorely needed to 
monitor the dynamics of change. Land use 
often changes in response to land and water 
management practices, which, in turn, are 
influenced by global economic forces. 

Monitoring hydrometeorological and envi-
ronmental variables will help to document the 
effects of global change. Observing, identify-
ing, documenting, and understanding the 
dynamics of change should be the foundation 
for the design and implementation of adapta-
tion measures. As trends and changes in vari-
ables caused by global changes will likely 
manifest themselves unevenly in space and 
time, remote sensing is essential to comple-
ment limited ground observations. 

Good monitoring allows (a) identifying 
changes in meteorological variables and 
attributing causes, (b) assessing the impacts 
on hydrologic variables and dynamics, and 

longer term, flows are expected to decrease 
drastically and become highly variable, having 
lost the regulating influence of a snowpack and 
thus being subject to the vagaries of liquid 
precipitation. 

The change in hydrologic regimes can be 
caused by changes in climate (global or local), 
changes in land cover and use, and direct 
human intervention in the hydrologic cycle 
(dams, pumping). While climate change 
impacts on hydrology have a low signal-to-
noise ratio, changes in land cover and use can 
severely affect the partitioning of rainfall into 
the different components of the hydrologic 
cycle. Changes in the amount and partitioning 
of precipitation into evapotranspiration, infil-
tration, and runoff are the main source of 
changes in hydrologic regimes. 

Land cover change usually has an immediate 
impact on hydrologic responses. Villarini et al. 
(2009) show that changes in land use–related 
cover can have a significant influence on the 
hydrologic response of a basin. During the 
urbanization of their study basin, the 1,000-
year flood became the 10-year flood in a period 
of 50 years. This illustrates the fact that 
nonclimatic, anthropogenic changes often 
stress water management more in the short 
term, with regard to the design of flood param-
eters. Nevertheless, changes in climate and 
climate-induced vegetation are also likely to be 
a significant factor in regional water balances.

Salas et al. (2012) broadly review scientific 
efforts to characterize natural and anthropo-
genic sources of change and provide a picture 
of the combination of processes affecting the 
water cycle. In addition to the ones mentioned 
above, these include volcanic explosions and 
large forest fires, which both influence the bal-
ance and composition of atmospheric energy 
as well as ground cover. The El Niño Southern 
Oscillation, the Pacific Decadal Oscillation, the 
Atlantic Multidecadal Oscillation, the Arctic 
Oscillation, and others influence climate at 
interannual and multidecadal intervals, and 
their effect on the magnitude and frequency of 
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water utilities. Using advanced classification 
techniques, they created a multitemporal 
(1984–2010) view of land cover change  
along the rapidly growing Tucson-Phoenix  
urban corridor. These classifications created 
 multitemporal maps of changing urban resi-
dential, urban commercial-industrial, agri-
cultural, roads, bare ground, natural desert 
cover, riparian, and water areas. These data 
were subsequently integrated into an ongoing 
analysis of urban and water policy and water 
allocation within the region, making it easier 
to evaluate the correlation of water availabil-
ity and use, socioeconomic drivers, and direc-
tion and magnitude of changes in land use or 
cover. 

EXTREME EVENTS: FLOODS 
AND DROUGHTS

Floods and droughts entail great economic 
costs and loss of lives worldwide every year. 
The magnitude and frequency of extreme 
events are expected to increase with intensifi-
cation of the hydrologic cycle due to global 
warming (IPCC 2007, 2014)2 and its regional 
hydrologic impacts (Domínguez et  al. 2012; 
Serrat-Capdevila et al. 2013). Coping with vari-
ability requires different approaches to accom-
modate events from different sides of the 
spectrum.

A report by the American Water Resources 
Association, Proactive Flood and Drought Man-
agement (Dennis 2013), presents some lessons 
learned regarding how to manage extreme 
events. The report recommends developing 
management strategies based on existing 
hydrologic observations, data, and continued 
monitoring, taking into account the spatial 
analysis of exposure and vulnerability to floods 
and droughts. “Soft” ecosystem-based solu-
tions are also recommended, promoting eco-
system services and functions as part of 
comprehensive approaches, both for flood-
plain reconnection (flood attenuation) and for 

(c)  understanding observed changes in 
regional water budgets and water resources 
availability. 

Changes in seasonal and annual snow cover, 
evolution in the length of glaciers, as well as 
changes in vegetation, cloud cover, rainfall 
rates, soil moisture content, evapotranspira-
tion, and other hydrologic variables of interest 
can best be quantified and spatially monitored 
with Earth observation. The combination of 
RS observations and climate impact studies 
using land surface and hydrologic models 
offers a vantage point for informing adaptation 
to climate and global change. 

One of the main challenges in the analysis of 
climatic variability and trends is to reconcile 
modern RS observations with long historical 
ground records. Most historical data sets of 
gauge precipitation that span a significant time 
period are not updated continually with near-
real-time observations. An example in this 
context is the Climate Research Unit time-
series gauge precipitation data set, which pro-
vides a century-long record of monthly 
precipitation from 1901 to 2009. While such 
data sets can be used for climatologic analysis 
of the historical period, they usually cannot be 
used for near-real-time drought monitoring, as 
they are not updated continually. However, 
near-real-time, quasi-global precipitation 
products span a decade and a half at most. This 
mismatch between long-term historical data 
sets and near-real-time observations poses a 
challenge for assessing the impacts of climate 
variability and change as well as for spatial 
monitoring of drought. 

Remote sensing can be combined with 
ground observations and socioeconomic anal-
ysis of water use to provide insights that are 
useful for planning, policy, and management;  
Hartfield et al. (2014) provides a good illustra-
tion. In a collaborative initiative with scholars 
and water management practitioners, they 
analyze the dynamics of water supply and 
sanitation infrastructure and urban growth 
using RS observations and information from 
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Several approaches use RS data to monitor 
the physical dimensions of drought, as illus-
trated by the following examples: 

• The Surface Hydrology Group at Prince-
ton University operates the experimental 
Africa Drought Monitor (Sheffield et  al. 
2014). It provides Africa-wide maps of pre-
cipitation, temperature, wind speed, and 
hydrologic variables, as simulated by the 
variable infiltration capacity model over 
the entire continent at a 0.25° resolution.4 
The HyDros Lab from the University of 
Oklahoma also provides global maps of 
near-real-time streamflow and soil mois-
ture estimates from their Coupled Rout-
ing and Excess STorage model (Wang et al. 
2011). 5 Both of these applications use the 
multisatellite precipitation analysis prod-
uct of the Tropical Rainfall Measuring 
Mission as input on precipitation.

• Going from the global to the basin scale, the 
Hydrology and Water Resources Depart-
ment of the University of Arizona, in part-
nership with the National Aeronautics and 
Space Administration (NASA) SERVIR Pro-
gram and the International Center for Inte-
grated Water Resources Management of the 
United Nations Educational, Scientific, and 
Cultural Organization (UNESCO), has been 
developing experimental monitors and 7- to 
10-day streamflow forecasts in watersheds 
of four international African basins: the 
Mara (Kenya, Tanzania), the Upper Zam-
bezi (Angola, Namibia,  Zambia), the Tekeze 
(Eritrea, Ethiopia), and the  Senegal (Guinea, 
Mali, Mauritania, Senegal). These efforts 
represent a multimodel and multiproduct 
approach using state-of-the-art climate 
projections to develop streamflow forecasts 
and assess climate change impacts on water 
availability for the current century.6  

• Satellite rainfall estimates can also be used 
to derive a grid cell-level water requirement 
satisfaction index (WRSI)—the percentage  

enhanced recharge purposes (drought risk 
reduction through conjunctive use). 

The report highlights the importance of 
“planning for the unexpected” by anticipating 
extreme events of magnitudes not yet seen. 
While this recommendation is difficult to 
translate into design investments, special 
methodologies such as the decision scaling 
approach have been developed (Brown et  al. 
2012) and reported (García et al. 2014) to pro-
vide a cost-efficient way of adapting to chang-
ing risks. These methodologies also highlight 
the need to involve all stakeholders—politi-
cians, decision makers, the private sector, 
agencies, and competing interest groups—in 
an equitable and thoughtful process, to ensure 
a coordinated and comprehensive, multiscale 
approach. The shared vision planning 
approach originated with the necessity to 
cope with drought and was developed by plan-
ning practitioners who had to address water 
scarcity issues and planning challenges in 
their professional capacity. More about the 
shared vision planning approach can be found 
in Cardwell, Langsdale, and Stephenson 
(2009).

With intensification of the hydrologic cycle, 
extreme events are expected to become more 
intense and more frequent, although estimates 
of future intensities and frequencies are 
fraught with large uncertainties. Diversifying 
resources and approaches, building flexibility 
into the system, as well as conserving unused 
buffers3 may be the key to ensuring resilience 
to extreme events and to minimizing their eco-
nomic costs. Full allocation and maximal use of 
water resources, without considering buffers 
and redundancies in the system, could, in the 
short term, lead to optimal but “brittle” solu-
tions in the event of shocks to the system. 
Monitoring current trends and hydrologic con-
ditions is essential to choosing appropriate 
management actions in time and to being able 
to share key information with users and stake-
holders. RS measurements can be very useful 
in this context.
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for the application to be beneficial. Flood 
warning and alert systems focus on the magni-
tude of peak flows. Accurately forecasting peak 
flows at an acceptable level of precision 
requires rainfall estimates of a relatively high 
spatial and temporal resolution (Li et al. 2008). 
As the extent of damage and loss of life depend 
on the performance of a flood warning system, 
the levels of acceptable uncertainty are much 
lower than in other applications, such as reser-
voir operations (which are mostly concerned 
with water volumes). 

A forecast system has two types of predic-
tion errors: type I (missed predictions) and 
type II (false alerts). While type I errors have a 
short-term impact (flood damage or loss of life), 
type II errors reduce the credibility of the fore-
cast. The fraction of the target population that 
will respond to a flood warning or alert depends 
on a system’s past performance. Thus if an RS 
system generates too many false alarms, an 
alarm from a correct prediction would likely be 
ignored, with potentially catastrophic effects. 

RS products can be used in different appli-
cations aimed at informing flood warnings. For 
example,

• In the face of significant uncertainties in 
globally available near-real-time satellite 
rainfall products, the reliability of satellite-
based forecasts of rainfall-runoff floods 
may vary with the setting, product, and sea-
son and may not always be, at present, suffi-
cient for real-world flood warning and alert 
systems (Serrat-Capdevila, Valdes, and 
Stakhiv 2013). The need for information 
on changes in rainfall-runoff to provide 
streamflow forecasts adds an additional 
layer of uncertainty and can magnify errors 
in estimating the peak magnitude of the 
flood (Nikopoulos et al. 2010). The Hydro-
Estimator of Central America Flash Flood 
Guidance produces a flash flood threat 
index using the “excess amount of rainfall 
for a three-hour period over what is needed 
to cause bank-full flows in small streams.”8 

ratio of actual crop evapotranspiration 
over a reference-crop evapotranspiration 
(non-water limited). The WRSI can be a 
good indicator of yield reduction due to 
water limitation. The Famine Early Warn-
ing System Network of the U.S. Agency 
for International Development (USAID) 
combines monitoring of rainfall, using 
the rainfall estimation algorithm version 
2 (RFE 2.0) of the National Oceanic and 
Atmospheric Administration (NOAA), 
and crop production, using the WRSI, 
with socioeconomic variables (for exam-
ple, prices) and a livelihoods approach to 
understand the strategies that people use 
to meet their basic needs. This provides 
insights into which population groups are 
most vulnerable to food insecurity, how 
long they remain vulnerable, and what the 
best mitigation approaches are (Verdin 
et al. 2005). 

• Earth observation can be used to moni-
tor small water holes, which are especially 
relevant to rural livelihoods, pastoralists 
and their herds, and wildlife migrations. A 
NASA-funded project uses a water-balance 
approach to model water levels of pools in 
closed basins.7 The European Space  Agency’s 
TIGER program uses Landsat visual imagery 
at 30-meter resolution to monitor changes in 
the size of “small” water bodies.

• Estimates of the NDVI can also be used to 
derive the vegetation health index, which 
Yan et al. (2014) find to be a more accurate 
detector of agricultural droughts for irrigated 
areas than the standard precipitation index. 

The use of satellite estimates for flood fore-
casting applications and flood alert systems is 
perhaps the most complex, with regard to the 
rainfall-runoff transformations involved (mag-
nifying the rainfall errors in peak flow), the 
hydrodynamic modeling that will determine 
flood levels at specific locations, and the level 
of precision and accuracy that will be needed 
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Meteorological Organization include the flood 
forecasting Distributed Model Intercompari-
son Project, the development of a framework 
for assessing the efficiency of flood forecasting 
services, and the establishment of regional 
flash flood guidance systems using integrated 
observations and model outputs. In a collab-
orative effort of the World Meteorological 
Organization, NOAA, USAID, and the Hydro-
logic Research Centre, integrated satellite 
observations, in situ observations, and models 
are used to implement flash flood guidance 
systems in streams in many regions and trans-
boundary basins. Several satellite-based flood 
prediction and monitoring systems are 
reported to be almost operational (Lawford 
2014), such as the Integrated Flood Analysis 
System, provided by UNESCO’s International 
Centre for Water Hazard and Risk Manage-
ment, the Global Flood Alert System, provided 
by the International Flood Network, and 
Global Flood and Landslide Monitoring, pro-
vided by NASA and the Goddard Space Flight 
Center (Lawford 2014).

For these systems to be truly useful for 
water managers and decision makers, future 
research and applications will have to consider 
the reliability of flood warning systems in addi-
tion to the estimated uncertainty in streamflow 
forecasts. Reflecting these complexities, Cen-
tral America Flash Flood Guidance labels its 
flash flood threat index as “experimental” and 
“not for operational use.” Because of the short 
time of concentration and the latency of rain-
fall products, the window for early warning 
action is limited in small watersheds. 

CONJUNCTIVE USE OF SURFACE 
WATER AND GROUNDWATER

The adoption of pumps and rural electrifica-
tion in the mid-twentieth century made it 
 possible to tap vast groundwater resources, 
opening up a domain that institutions had not 
governed before. This led to a challenging issue 

• Soil moisture estimates can also be useful 
for predicting floods, as they provide infor-
mation on the “wetness” of a basin and 
thus the partitioning of rainwater between 
infiltration and runoff, depending on the 
saturation level of the headwaters of the 
watershed. In addition, soil moisture can 
help to correct for errors produced using 
satellite precipitation products such as 
false detections and missed events.

• An effective and innovative approach to 
flood prediction in large rivers is the use of 
surface altimeter measurements. Tennes-
see Technological University, in collabora-
tion with the Institute of Water Modeling 
(Bangladesh), the NASA-USAID SERVIR 
Program, and the International Centre 
for Integrated Mountain Development 
(Nepal), developed an 8-day flood forecast-
ing system using river surface altimeter 
measurements from the Jason-2 satellite 
in the Ganges-Brahmaputra-Meghna sys-
tem, which drains the Himalayas through 
Bangladesh (Hossain et al. 2014). Measure-
ments of river surface levels upstream and 
a hydrodynamic model (HEC-Ras) are 
used to predict how the observed water 
levels upstream will propagate to areas 
downstream. Forecast validation efforts 
have shown a root mean square error of 
0.7 meter, with lead times up to 10 days at 
the India-Bangladesh border (with errors 
ranging up to 0.5 meter and exception-
ally even over 1 meter). Given the much 
larger changes in river levels and the fact 
that there is currently no alternative for 
an 8-day lead time forecast in Bangladesh, 
these errors are considered acceptable 
given that only RS data are used for the 
forecasts. Efforts are under way to improve 
the forecasts by using additional altimeter 
measurements from other satellite sensors 
(F. Hossain, personal communication).9 

Regarding the role of international organiza-
tions, ongoing activities related to the World 
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on the water supply, something usually based 
on models. Studies of capture through model-
ing are documented in the Colorado River 
delta (Maddock, Serrat-Capdevila, and Valdes 
2010) and the San Pedro basin in Arizona-
Sonora (Leake, Pool, and Leenhouts 2008). 
Capture maps display the impact that pumping 
in any given area would have on a specific 
water body, such as a nearby river. By showing 
in a spatially explicit manner the degree to 
which pumping will intercept water that 
would otherwise contribute to baseflows in the 
river, capture maps can help managers to 
choose pumping locations that minimize the 
impact of groundwater abstractions or to 
determine feasible pumping rates for a partic-
ular fixed location.

Taking a river basin perspective, investments 
in managing conjunctive use should aim to 
reshape infrastructure at all scales to promote 
groundwater recharge and to build manage-
ment capacity (monitoring systems, institutional 
adaptations, best practices, and greater incen-
tive compatibility) around improved groundwa-
ter governance frameworks and  participatory 
approaches (Shah, Darghouth, and Dinar 2006; 
Wijnen et al. 2012). Aquifer  management orga-
nizations are needed, perhaps embedded or 
working closely with basin  councils and gather-
ing representatives from all relevant decision-
making and user  organizations. Governance- and 
incentive-based approaches to overcome policy 
challenges are summarized later in this chapter. 

To achieve sustainable management in con-
junctive use of water, several objectives must be 
pursued simultaneously: introducing managed 
aquifer recharge, improving efficiency in water 
use, and adopting water demand–curbing 
 measures to conserve water. The need for inte-
grated approaches is illustrated by case studies 
in Peru’s Pacific Coast valleys such as Ica, where 
agribusiness export companies use high- 
efficiency drip irrigation—farming a larger area 
than before with the same amount of water and 
eliminating return flows to the aquifer—without 
reducing their demand for water from the 

regarding the management of surface water 
and groundwater, which has not yet been fully 
resolved. The social organization—that is, the 
institutions involved in managing the conjunc-
tive use of surface water and groundwater—is 
still seeking ways to regulate the use of this 
technological innovation.

Efficient conjunctive use of surface water 
and groundwater provides an opportunity to 
handle variable surface flows and work toward 
sustainability in regions with severely overex-
ploited aquifers, balancing water withdrawals 
with managed recharge. It requires local 
research on recharge processes and the poten-
tial for managed aquifer recharge,10 storage, 
and recovery. Research is also needed on 
locally adapted policies and approaches to 
managing the system and achieving a sustain-
able pumping yield, supported by a conjunc-
tive use strategy and implementation planning. 
The robustness of integrated conjunctive use 
water management plans can then be tested 
with a range of climate variability and climate 
change scenarios to account for uncertainty.

Examples exist in Western and Southern 
India, where, faced with dropping ground-
water levels and aquifer mining, local com-
munities and governments are building 
water harvesting and recharge structures 
aimed at increasing groundwater recharge 
during the rainy season, when surface water 
is abundant. These measures not only repre-
sent a successful flood mitigation strategy, 
but also improve water security for human 
and agricultural consumption, protecting 
and stabilizing rural livelihoods against 
drought and decreasing groundwater levels 
(Shah 2003). 

In conjunctive use management, the con-
cept of capture is important: pumping water 
from an aquifer system that is hydraulically 
connected to a surface water system will even-
tually deplete the surface water system. Such 
depletion is a form of surface water capture. It 
is essential that water managers understand 
the concept of capture and estimate its effects 
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example, kilograms of grain) produced per 
cubic meter of water consumed to grow 
that crop. 

• The impacts of irrigation policies, energy 
subsidies, and other policies on agricul-
tural water use can also be monitored 
through ET observations. 

• Estimates of soil moisture and evapotrans-
piration can be used to inform both farm-
ers and irrigation managers of the state 
of their fields when water conservation is 
urgent. While satellite-derived ET esti-
mates make it possible to calculate the net 
loss of water to the atmosphere, remotely 
sensed soil moisture provides information 
about the water content of the upper 1 to 
5 centimeters of soil.

• Finally, while RS measurements of changes 
in the gravity field—due to changes in ter-
restrial water content—have a very large 
footprint (the Gravity Recovery and Cli-
mate Experiment, GRACE, has a 300-kilo-
meter footprint), regional aquifer-level 
estimates may be used to constrain 
regional groundwater models. In this way, 
GRACE data on aquifer levels can be rec-
onciled with local (ground) well measure-
ments to provide insight into what areas 
would benefit most from managed aquifer 
recharge. 

• In large river systems with significant agri-
culture, such as the Indo-Gangetic plains, 
altimeter data on river levels upstream can 
help managers and operators to maximize 
artificial recharge efforts and optimize 
the allocation of water among uses and 
rechargeable aquifers.

THE FOOD-WATER-ENERGY NEXUS

Integrated assessments of resource use are often 
lacking, and analysis frameworks are rarely 
multidisciplinary. How can well-informed, 

acquifer (Garduño and Foster 2010). This issue 
is common in many other settings such as the 
Hai basin in China (Wijnen et al. 2012), where a 
monitoring system was developed to under-
stand the consumptive use of water using 
 satellite-based ET estimates. It is also important 
to consider water quality issues in conjunctive 
use management schemes, in order to minimize 
potential threats, such as recharging contami-
nant loads over time via infiltration from agri-
culture, poor onsite sanitation, upconing of 
saline groundwater into the freshwater aquifer, 
or other management-induced water quality 
issues (arsenic, fluoride, and radioactive 
contamination).

Good monitoring of aquifer dynamics and 
water use patterns will facilitate the develop-
ment of solutions for sustainable management. 
By combining groundwater monitoring with 
capacity building of local communities (for 
example, participatory monitoring approaches 
in India), farmers and other users can learn 
how to manage their groundwater resources. 
The sharing of collective measurements can 
also serve as a platform for transparency, out-
reach, and discussion. 

Conjunctive water use management would 
benefit from RS applications such as the 
following:

• Estimation of evapotranspiration can help 
to quantify irrigated extensions and the 
consumptive use of water, making it easier 
to maintain an accurate inventory of the 
number of water users and the volume of 
water used. Similarly, it can contribute to 
an understanding of water use patterns in 
time and space. Evapotranspiration can 
provide information about irrigated and 
nonirrigated areas. In the United States, it is 
monitored so that insurance claims filed for 
failed harvests purportedly caused by lack 
of access to irrigation water may be verified. 

• Estimates of evapotranspiration can be 
used to quantify crop water productiv-
ity—the amount of marketable crops (for 
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water availability, energy demand, as well as 
production, which will ripple through the sys-
tem in ways that are difficult to predict 
(adapted from Rodríguez, van den Berg, and 
McMahon 2012). At the regional and local lev-
els, the ensuing changes in resource use, eco-
nomic activities, and land use will be shaped by 
global economic forces (energy prices, market 
demands), water availability, and climate 
change impacts. O’Brien and Leichenko (2000) 
dub the combined effects of globalization and 
local manifestations of climate change impacts 
“double exposure.” 

At a higher level, integrated assessments are 
essential to understanding coupled dynamics. 
The analysis of social metabolism takes a mul-
tidisciplinary look at how society combines 
water, energy, and other resources to produce 
goods or promote social well-being, as well as 
how it grows and maintains itself. Such inte-
grative, quantitative assessments are useful for 
comparing competing future scenarios and 
comprehensive multisector plans for a region. 

Near-real-time monitoring of hydrometeo-
rological variables with remote sensing can 
help to inform short-term decisions on water 
for food security and crop production, as well 
as for hydropower generation. The Famine 
Early Warning System described earlier illus-
trates the use of a satellite precipitation prod-
uct to monitor food security and so does the 
CropWatch System in China (appendix B)—a 
global crop monitoring system using a wide 
array of RS data for applications such as crop 
condition monitoring, drought monitoring, 
crop acreage estimation, crop yield estimation, 
grain production estimation, and cropping 
index monitoring (Wu et al. 2014).

The Food Early Solutions for Africa Micro-
Insurance Project of the Netherlands Ministry 
of Development Cooperation uses visual and 
thermal infrared Meteosat imagery to monitor 
water balance, focusing on precipitation and 
relative evapotranspiration. Having found that 
the water balance (precipitation minus relative 
evapotranspiration) fits well with reported 

cross-sector, and integrated decisions be made 
when academic research on integrated assess-
ments is still in progress, relatively recent, or 
even lacking? Food requires water for agricul-
ture and energy for growth and transportation. 
Water requires energy to be accessed, treated, 
conveyed, and delivered. In addition, energy 
prices significantly affect the cost of building 
and maintaining water infrastructure, partly 
through the production and delivery cost of 
inputs (Rodríguez, van den Berg, and McMahon 
2012). In some cases, such as reverse osmosis 
desalination, energy prices directly influence 
production costs because of the high energy 
requirements of operation. 

Water is often used to generate energy, and 
it is expected that renewable energy sources 
(biofuels) will demand even more water. 
Extractive fossil fuel activities in the energy 
sector can severely compromise water quality. 
Biofuel production competes with food pro-
duction for water and space, raising the price 
of staple foods. Subsidies in the energy sector 
meant to lower the cost of food production 
often undermine the sustainability of ground-
water use. In contrast, rising global energy 
prices (due to economic and population 
growth) and continued water scarcity will lead 
to higher food prices, which may push more 
people below the poverty line. Taking into 
account current practices and technology and 
a global population of 9 billion by 2050, Hanjra 
and Qureshi (2010) estimate a current water 
gap for food production of 3,300 cubic kilome-
ters per year. 

Without returning to the Malthusian versus 
Cornucopian debate regarding the role that 
technology and markets may play in solving 
the sustainability challenge of our time, it is 
clear that investments targeting improvements 
in irrigation infrastructure and water produc-
tivity can help to meet the demand for water 
for food production (Falkenmark and Molden 
2008). In addition, projected increases in tem-
perature and changes in precipitation patterns, 
due to climate change, will lead to changes in 



24  |  P A R T  I :  W A T e R  A n d  e A R T h  O b s e R v A T I O n s  I n  T h e  W O R l d  b A n k

become the second-largest economy in the 
world, it is estimated that the costs of environ-
mental impacts represent about 9 percent of 
its gross domestic product. This fact threatens 
both its competitiveness and its welfare.

Green growth is an approach to economic 
growth that incorporates the following ele-
ments: sustainable natural resources man-
agement; more resilient communities, based 
on the adoption of eco-friendly practices 
(permaculture, soil and water conservation) 
and designs (comprehensive planning); 
investments in environmentally integrated 
infrastructure, green technologies, and inno-
vation; and the gradual introduction of new 
pricing schemes for resource use that fully 
account for externalities.

Investing in environmentally sustainable 
growth is good for long-term economic pros-
pects because it increases natural capital 
(through   better  management of scarce resour
ces); raises labor productivity by  improving 
health; increases physical capital by better 
managing natural risks (ecosystems provide 
regulatory and protective services, including 
flood protection, coastal storm protection, and 
infiltration and soil aquifer storage); increases 
the efficiency of resource use; stimulates the 
economy in the short term (through green 
investments); accelerates the development and 
dissemination of innovation; and creates 
knowledge spillovers.

Infrastructure is a central issue in develop-
ing countries, first because their infrastruc-
ture needs are acute and second because 
infrastructure policies are central to support-
ing green growth and alleviating water scar-
city. Since infrastructure decisions have a 
high potential for “regret” (as they are long-
lived), the current infrastructure gap offers 
developing countries the opportunity to 
“build right.” 

Remote sensing can help to improve the 
quality and effectiveness of water infrastruc-
ture planning and project design by comple-
menting information provided by in situ 

discharges and that the relative evapotranspira-
tion is more closely related and proportional to 
reported crop yields in pilot areas, two 
Meteosat-based insurance indexes have been 
proposed: the “dekad relative evapotranspira-
tion” (an agricultural drought index) and the 
“dekad cold cloud duration” (an excessive pre-
cipitation index). Numerous pilot projects with 
insurance companies in Africa have shown that 
these two indexes provide an excellent alterna-
tive to precipitation-based approaches, per-
forming “as good as or even better” (Rosema 
et al. 2014).

Remote sensing of evapotranspiration can 
provide valuable information on the impacts 
that changes in energy subsidies or prices have 
on water use and could even inform allocation 
decisions in situations of energy scarcity due to 
competing needs for water. 

An issue that could be explored further is 
the use of satellite-derived measures of evapo-
transpiration and soil moisture to identify 
regional soil and water management practices 
that have certain desirable characteristics or 
build on positive feedbacks, thereby promoting 
sustainable farming livelihoods.

GREEN GROWTH AND THE 
ENVIRONMENT

Models of economic growth have often ignored 
the role of natural capital as a factor of produc-
tion and limited the assessment of economic 
growth to physical capital (infrastructure, 
machinery, buildings, hardware), labor (popu-
lation, education, health), and productivity 
(technology, efficiency). Yet unsustainable 
management of the environment ultimately 
results in the destruction and full depreciation 
of natural capital, with negative repercussions 
for output in the short or medium term. If nat-
ural capital is considered a factor of produc-
tion, environmental policies are a beneficial 
investment. While China has grown at an 
annual rate of 10 percent in recent years and 
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Nevertheless, assistance fell 3 percent across 
all water sectors in 2011, the largest drop 
since 1997 (Rodríguez, van den Berg, and 
 McMahon 2012).11

Estimates of investment needs vary widely—
from US$103 billion per year for all developing 
countries until 2015 (Yepes 2008) to US$22 bil-
lion per year just for Africa, to ensure that the 
continent can reach the Millennium Develop-
ment Goal by the year 2020 (Foster and 
Briceño-Garmendia 2010). Funding sources for 
developing countries include (a) public contri-
butions in the form of official development 
assistance (grants, low-interest loans, technical 
assistance from donors and international finan-
cial institutions) and contributions from local 
governments funded by tax revenues; (b) pri-
vate contributions, which have been halved 
during the last two decades (as the financial cri-
sis lowered the tolerance for risky investments 
and a paradigm shift occurred toward more 
investment money but smaller investments); 
and (c) household contributions (toilets, septic 
tanks), which are not well documented but are 
estimated to contribute one-third of total water 
sector investments in Sub-Saharan Africa.

Various factors hamper the effectiveness of 
investments, such as the fluctuation of over-
seas development assistance from year to year, 
inadequate execution of or failure to execute 
budgeted funds by local governments, decen-
tralization of responsibilities coupled with 
inadequate follow-up of decentralized funding 
and capabilities, and strong urban-rural dis-
parities in the focus of investments. In addi-
tion, reported risks and ratings of water 
provisioning utilities often do not reflect the 
sustainability of the water supply or future 
hydrologic variability. For example, utility rat-
ings in the United States are based on the vol-
ume of water sales (short-term revenues), even 
if groundwater is currently being mined 
beyond sustainable levels. Climate risks and 
uncertainty should be factored into long-term 
adaptation plans, allowing for adequate financ-
ing and pricing of services.

measurements with available satellite-derived 
products. Remote sensing can be particularly 
valuable considering the importance of moni-
toring the dynamics of a complex and fast-
changing world and evaluating the impact of 
human interventions, new infrastructure, pol-
icies, and regulations on the environment:

• Monitoring changes in land use cover after 
implementing green growth projects or 
adopting certain policies as well as moni-
toring changes in hydrologic variables 
(such as soil moisture and evapotranspira-
tion in the wake of soil conservation inter-
ventions, for example) can provide insights 
into the extent to which project objectives 
have been met. 

• Similarly, remote sensing can provide 
valuable information for spatial planning 
purposes. 

FINANCIAL ISSUES

Water infrastructure that ensures a reliable 
water supply and well-functioning sanitation 
and irrigation services is a cornerstone of 
sustainable development and poverty allevia-
tion, providing food and livelihood security 
in addition to healthy living conditions. The 
infrastructure gap is the difference between 
current levels of spending in water-related 
infrastructure and service provision and the 
spending levels required to meet the devel-
opment targets. This gap has widened since 
the 1990s, because of the financial crisis, pop-
ulation growth, and deficits in the opera-
tional budget for water provisioning services 
in most developing countries. International 
financial institutions have attempted to offset 
these deficits through development assis-
tance to the water sector. The World Bank 
Group committed more than US$100 billion 
in 2009 to maintain and expand existing 
infrastructure in countries that had cut their 
service budgets during previous crises. 



26  |  P A R T  I :  W A T e R  A n d  e A R T h  O b s e R v A T I O n s  I n  T h e  W O R l d  b A n k

of data require some funding. In general, a 
good observational system should ensure 
proper monitoring and reporting of impacts on 
water resources and the environment from 
specific investments, measures, policies, and 
initiatives. This should be reflected in better, 
more sustainable management and provide a 
credibility asset for securing investment from 
public and private entities. Moreover, invest-
ments in capacity building (for in-house exper-
tise of government agencies) usually provide a 
high return on investment.

INSTITUTIONAL FRAMEWORKS 
AND GOVERNANCE ISSUES

As new technologies progressively shape the 
way in which humans interact with the envi-
ronment, new socioeconomic structures and 
arrangements emerge and evolve in response 
to the need to manage and regulate those inter-
actions. The observed management disconnect 
between surface water and groundwater is a 
good example of how institutional frameworks 
have struggled to keep pace with technological 
advances. Since the adoption of groundwater 
pumping, the institutional organization 
regarding management of the conjunctive use 
of surface water and groundwater has yet to be 
resolved. Society still needs to regulate the use 
of this technological innovation in an inte-
grated manner. Transparent, adaptive manage-
ment techniques are ideal under current 
circumstances, as they allow people the flexi-
bility to react to changes. However, success-
fully integrating existing and new policies is 
not easy. 

Attempts to introduce sustainable policies 
are often hampered by the trade-off between 
the short-term benefits of (over)exploitation 
and the long-term benefits of environmentally 
sound policies, the unequal distribution of 
power and influence among various user 
groups, the relatively short terms of political 
office (four to five years), and the political 

The main financial issues in the water sec-
tor relate to infrastructure for water provi-
sioning and sanitation. To help to close the 
funding gap, Rodríguez, van den Berg, and 
McMahon (2012) propose a “reform cycle” 
with five circular and iterative components, 
incorporating the needs of all stakeholders. 
They suggest the following five components: 
(a) service providers deliver services more 
efficiently (by reducing nonrevenue water ser-
vices, improving billing and collections, and 
carefully choosing technology for water ser-
vices); (b) pricing of water is based on sound 
cost-recovery models (by covering the full 
financial cost of the services provided to guar-
antee their sustainability, providing incentives 
to use water more efficiently, giving financial 
compensation for ecosystem services, and 
introducing tariff reforms); (c) governments 
improve public expenditure (by clarifying who 
pays for what costs, strengthening the commit-
ment to the water sector, and subsidizing users 
and service providers cautiously); (d) all stake-
holders develop sound sector governance (by 
achieving political stability, the rule of law, gov-
ernment effectiveness, regulatory quality, pub-
lic accountability, and a clear definition of the 
mandate of the main actors—policy, manage-
ment, infrastructure development, service 
provision, financing, and regulation); and 
(e)  governments and donors leverage 
resources to attract private investment (which 
demands solvent utilities, sound governance 
structures, and local capacity to plan and exe-
cute budgets).

Good monitoring capability can facilitate 
the communication with users and stakehold-
ers, for instance, when making the case for 
compensating ecosystem services and cover-
ing the costs of environmental degradation 
rather than leaving the tab for future genera-
tions. Better governance also requires more 
transparent information and monitoring. Very 
large amounts of RS data that may be useful in 
this context are freely available and open to the 
public; only the processing and interpretation 
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they need to make those decisions, hydromete-
orological agencies should explain how their 
monitoring, forecasts, and assessments can be 
operationalized in the decision-making pro-
cess. The climate adaptation strategies and 
plans to be developed and their exact charac-
teristics will depend on past and current obser-
vations of water and environmental systems. 
These strategies and plans will have to recon-
cile development goals with specific interven-
tions. Sustainable societies are those that 
reinvest in knowledge and understanding; 
capacity building and training should always be 
a central focus of water security (Serrat-
Capdevila and Mishra 2012).

Understanding the dynamics of power in a 
governance system—and the interactions 
between political and economic processes that 
shape such dynamics—is essential to the design 
and implementation of development strategies 
and policies (World Bank 2009). Political 
economy can be defined in practical terms as 
“the way in which different stakeholders influ-
ence policy, governance, and resource alloca-
tion and thereby influence outcomes” (Wijnen 
et  al. 2012). In the management of common-
pool resources where abstractions by one user 
benefit the individual but diminish the pool 
available to others, monitoring and informa-
tion transparency, to a large extent made pos-
sible by Earth observation, are essential to 
enabling both top-down (government control, 
privatization) and bottom-up (collective man-
agement of common-pool resources) manage-
ment approaches (Hardin 1968; Ostrom  
et al. 1999). A good understanding of the power 
relations between users, user groups, agencies 
from multiple sectors, politicians, and the 
 voting public should steer the design of policy 
and governance approaches that are likely to 
work best in a specific setting.

Remote sensing can support governance 
and institutional frameworks. For example, 

• RS data can shed light on issues of data trans-
parency and information control, preventing 

disadvantage inherent in defending long-term 
issues (requiring regulation, demand manage-
ment, and water use and service charges) ver-
sus addressing short-term needs with limited 
budgets and capacity.

Flexibility is an important aspect of a good, 
adaptive management practice. Institutions 
should be able to change past policies based on 
their observed impacts on the system. In this 
feedback loop linking the latest observations 
with the next decision-making steps, close col-
laboration is vital between those who monitor, 
study, and interpret the behavior of the system 
and those who ultimately make the decisions. 
Traditionally, these two groups have worked 
for different institutions, and communication 
between them has not necessarily been fluid. 
That is why an adaptive management mecha-
nism is needed that will foster the development 
of new organisms and institutional strategies 
capable of putting new knowledge to practical 
use. For management to be truly adaptive, both 
the policies and the institutions must be flexi-
ble (Serrat-Capdevila et al. 2009, 2014).

Especially with Earth observations, there is 
insufficient capacity to close the feedback loop 
between system monitoring, modeling and sci-
entific analysis, stakeholder participation, and 
decision making. Democratic societies are 
striving toward open and transparent water 
governance systems, supported by participa-
tory mechanisms. The best approaches are 
those that manage to integrate structured pub-
lic participation, planning and management 
processes, and strong scientific input, thereby 
contributing to science-based decision mak-
ing. Thus both public and private institutions, 
as well as the general public, should be 
involved. National hydrometeorological agen-
cies should, among other things, be responsi-
ble for analyzing and interpreting up-to-date 
observational records that are linked directly 
to water management decision-making needs. 

While decision makers should spell out their 
criteria for making specific climate- and water-
sensitive decisions as well as the information 
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consideration to the access to and allocation 
of water resources.

The challenges of transboundary basins are 
often conditioned by a lack of data sharing and 
thus a lack of reliable information for all the 
riparian countries regarding the hydrologic 
state of the basin as a whole, beyond its bor-
ders. In addition, the parties involved may dis-
pute the veracity of the data and information 
shared. 

Subramanian, Brown, and Wolf (2012) 
review five case studies of transboundary col-
laboration from the perspective of country 
decision makers, providing a better under-
standing of the political economy of coopera-
tion. They classify perceived risk in five 
categories and propose seven risk-reduction 
approaches, the first of which is to expand 
information, knowledge, and skills. This 
approach should also involve observation and 
analysis to meet gaps in knowledge, as well as 
training and capacity building. 

Remote sensing is a tool for indirectly mea-
suring hydrologic states in a (transboundary) 
basin beyond a nation’s borders and for verify-
ing shared information. For example,

• Remote sensing can help all parties to 
understand the resource dynamics (rivers 
and aquifer systems) because data shar-
ing and proper monitoring are the basis 
for successful collaborative agreements 
and management efforts. Satellite-derived 
products can address the need of trans-
boundary agreements for periodic moni-
toring and data sharing. 

• Remote sensing can also be used to predict 
flows because it provides information from 
parts of the basin that lie outside a nation’s 
borders. The Institute of Water Model-
ing’s flood forecasts in Bangladesh using 
altimeter data is a perfect example. Altim-
eter measurements from satellite Jason-2 
provide surface water levels from river 
reaches in India that are 600 kilometers 
upstream from the Bangladeshi borders. 

the pursuit of hidden agendas and informing 
other political economy challenges. 

• RS data may help financiers and donors to 
determine whether specific decisions are 
based on sound science and information or 
guided by other interests. Even if the lat-
ter is true, building capabilities to use and 
interpret RS data is likely to be beneficial 
in the long term, as the political economy 
context may evolve (see the example in 
Wijnen et al. 2012).

TRANSBOUNDARY ISSUES 

Transboundary basins cover more than half of 
the world’s land surface, and their management 
can give rise to conflicts. A good characteriza-
tion of a resource is the basis of international 
agreements on its use as a shared resource, 
more specifically, whether the sharing of sur-
face water or groundwater is addressed. Trans-
boundary agreements on surface water usually 
revolve around the delivery or release of 
streamflows at particular border locations 
(where watercourses cross borders) over a 
period of time. International coordination of 
transboundary groundwater management is 
more recent and perhaps more complex. Inter-
national water treaties after World War II 
began to include uses not related to navigation, 
such as flood control, hydropower develop-
ment, water quality management, and water 
allocation. Historically, the most challenging 
element of a deal has been getting countries to 
agree on the allocation of water quantities 
between the appropriate co-basins.

In addition to transboundary water issues 
involving sovereign nations, open conflicts, 
disputed territories, and other geopolitical 
issues often have a significant water dimen-
sion. Examples of this are the conflict 
between the West Bank and Gaza and Israel 
and the conflict between Sudan and South 
Sudan. Any serious attempt to resolve con-
flicts in these contexts must give due 
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 10. Managed aquifer recharge involves building infra-
structure or modifying the landscape to enhance 
groundwater recharge.

 11. Rodríguez, van den Berg, and McMahon (2012) 
describe the current state of water financing and 
propose a set of approaches to improve efficiency 
in financing and reach development targets.
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INTRODUCTION

Providing water services while sustainably 
managing a scarce resource has been at the 
core of World Bank Group assistance in the 
water sector. For the Bank, “water” comprises 
both water resources management (WRM) 
and services associated with water, such as 
water supply and sanitation, energy genera-
tion (power plant cooling and other energy 
source needs besides hydropower), irrigation, 
drainage and flood management, as well as 
environmental services. Water also plays a 
crucial role in other areas, from public health 
to urban and rural development. From the 
 discussion in chapter 1, it is clear that World 
Bank activities can benefit considerably from 
the use of remote sensing (RS) technology 
and, in fact, have already done so. To assess the 
potential value for water-related activities, 
this chapter summarizes the Bank’s water 
 policy, strategies, practice, and portfolio.

WATER POLICY AND STRATEGIES

Water has been one of the most important 
areas of World Bank lending. The 1992 World 
Development Report (World Bank 1992) high-
lights some of the difficulties encountered in 
this sector, exacerbated even then by rapid 
population growth and urbanization in devel-
oping countries. In response, the Bank 
approved a policy paper presenting a frame-
work for improving the situation (World Bank 
1993) and drawing from the Dublin Statement 
of the International Conference on Water and 
the Environment (ICWE 1992) as well as 
Agenda 21 (United Nations 1992). 

The objectives of the Bank’s WRM policy are 
to support countries’ efforts to reduce poverty 
and promote equitable, efficient, and sustain-
able development. This is done by  sustaining the 
water environment while providing potable 
water and sanitation facilities, providing drain-
age services and water for productive services, 

The World Bank Group  
and Water 
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Therefore, the basic strategic challenge for 
the Bank is finding ways to help clients to scale 
up the impact of their own policies, institu-
tions, and resources, so that the Bank’s 
resources—whether finance or knowledge—
are as effective as possible in helping clients to 
improve their overall approaches. 

THE WATER GLOBAL PRACTICE 

The World Bank Group consists of five special-
ized institutions: the International Bank for 
Reconstruction and Development (IBRD), the 
International Development Association (IDA), 
the International Finance Corporation, the 
Multilateral Investment Guarantee Agency, 
and the International Centre for Settlement of 
Investment Disputes. IBRD and IDA are com-
monly known as the World Bank, which, as of 
July 1, 2014, has 14 Global Practices as well as 
5  Cross-Cutting Solution Areas that aim to 
bring best-in-class knowledge and solutions to 
regional and country clients.

Through this new operating model, the 
World Bank Group aims to help countries to 
achieve the twin goals of (1) ending extreme 
poverty by 2030 and (2) promoting shared 
prosperity for the bottom 40 percent of the 
population in every developing country.

The World Bank Group has been addressing 
water issues globally through large-scale finan-
cial and technical assistance to countries. To 
meet the growing demand for investment 
financing driven by the best knowledge avail-
able, the World Bank Group launched a single, 
integrated Water Global Practice in 2014. The 
Water Global Practice brings together financ-
ing, implementation, and knowledge in one 
platform that combines the Bank’s global 
knowledge and country investments. This 
model seeks to generate transformational 
 solutions that help countries to grow sustain-
ably into the twenty-first century.

The World Bank Group’s strategy places the 
poor and most vulnerable people at the center 

and protecting people and property from floods. 
It stresses a comprehensive framework for for-
mulating country policies, taking into account 
the interdependence of water resources.

A decade later, the 2003 Water Resources 
Sector Strategy and the 2003 Water Supply 
and Sanitation Sector Business Strategy 
started guiding the Bank’s work in the water 
sector.1 Since 2003 practices have evolved to 
scale up the Bank’s assistance in water (see 
table 2.1): from reengagement in high-risk, 
high-return infrastructure and stronger 
emphasis on improving the delivery of water 
supply and sanitation services as well as the 
management of water resources to a growing 
focus on the role of climate change, urban 
development, energy, agriculture, and  disaster 
risk management. 

The Bank’s water strategies are still rele-
vant frameworks for addressing today’s 
water-related challenges. However, in order 
to respond to clients’ increasing demand for 
more and better-quality water by managing a 
complex series of trade-offs, the Water Global 
Practice has adopted a more inclusive, inte-
grated, cross-sector approach to addressing 
these challenges. Laid out in the Bank’s 2003 
Water Resources Sector Strategy, this 
approach describes the main global water 
challenges and suggests steps that the Bank 
could take to make water more inclusive, such 
as integrating water with energy,  climate, 
agriculture, land use, and overall economic 
development. This was reaffirmed in the 2010 
midcycle review of the 2003 strategy (World 
Bank 2010). 

The Bank is engaged in a wide variety of 
activities dealing directly with water, including 
support for water resources management, 
water supply and sanitation services, flood pro-
tection, hydropower, irrigation and drainage, as 
well as a variety of activities partially or indi-
rectly related to water, such as adaptation to 
and mitigation of climate change, urban devel-
opment, agriculture, transport, energy develop-
ment, and environmental protection.
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to improve the livelihoods of millions of the 
world’s  poorest people. 

THE WATER PORTFOLIO

The World Bank portfolio is a valuable source of 
information on the profile of Bank activities and 
provides a snapshot of the budget allocated to 
strategic goals and priority  sectors. The activi-
ties are classified by sector (using 10 different 
codes), according to which part of the economy 
received support,2 and by theme (66 in total), 
corresponding to the goals of Bank activities. 
Each sector is subdivided into subsectors or 
sector codes, and the themes are grouped into 
11 categories.3 Each project in the portfolio indi-
cates which sectors and themes it has been 
mapped to and the corresponding share of 
investment. In this publication, the sectors and 

of its work. Efforts aim to ensure that everyone 
has basic access to sustainable water and sani-
tation services and that management of water 
resources addresses water considerations in 
sectors such as agriculture, energy, disaster 
risk management, and health. Finally, these 
efforts place water at the center of adaptation 
strategies to help countries to cope with the 
effects of climate change and build a more 
resilient future for generations to come. 

Robust solutions to complex water issues 
incorporate cutting-edge knowledge and 
innovation. New knowledge products that 
draw on the Bank’s global experiences and 
partner expertise are filling the gaps in global 
knowledge and transforming the design of 
water investment projects to deliver results. 
Multiyear, programmatic engagements in 
strategic areas are designed to make dramatic 
economic improvements in the long term and 

Table 2.1  Evolution of Key Principles over Time

KEY PRINCIPLE 1993 WRM POLICY PAPER 2003 WATER RESOURCES 

SECTOR STRATEGY

2003 WATER SUPPLY AND 

SANITATION SECTOR 

BUSINESS STRATEGY

2010 MIDCYCLE 

IMPLEMENTATION REPORT

Integration and 
water resources 
management

Focuses on “modern” water 
resources management, that 
is, considers independent 
management of water by 
various sectors inappropriate; 
selects river basins as unit of 
analysis.

Places water resources 
management at the 
center of sustainable 
growth, with emphasis 
on basin-wide efficiency 
in irrigation.

establishes a link between 
sustainable water supply and 
sanitation services, better 
management of water 
resources, sanitation, and 
wastewater, and 
environmental protection.

highlights climate change 
adaptation and mitigation 
as well as need for 
cross-sector links.

stakeholders and 
institutions

emphasizes stakeholder 
participation in water 
resources management and 
need to respect the principle 
of “subsidiarity.”

emphasizes “political 
economy of change.” 

Focuses on need to respond 
to local demand and 
complement local initiatives; 
promotes private 
participation.

emphasizes building client 
capacity for results-based 
decision making.

Position on 
infrastructure

Promotes investments to 
improve water quality; 
promotes investments to 
increase supply only when 
adequate demand 
management is in place. 

Commits to reengage 
with high-risk, high-
reward hydraulic 
infrastructure.

Recognizes that infrastructure 
is important but insufficient 
for sustainability; switches 
focus to operator 
performance and service 
quality.

Reaffirms emphasis on 
infrastructure, with efforts 
to link quantity and quality 
to infrastructure 
investments.

economic and 
financial principles

emphasizes incentives and 
economic principles for 
improving allocation and 
enhancing quality.

emphasizes need for 
water pricing, cost 
recovery, and utility 
reform.

emphasizes need for clear and 
consistent financial policies, 
affordability, and centrality of 
cost recovery.

emphasizes need for more 
efficient water supply 
systems and support for 
low-cost, onsite sanitation.

Source: World bank 2013. 

Note: WRM = water resources management.
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complement financing operations, primarily 
economic and sector work and technical assis-
tance. Economic and sector work comprises 
products published by the Bank that can 
inform and influence the planning and design 
of a country strategy, lending program, or pol-
icy and that can build the client’s analytical 
capacity. Technical assistance activities 
strengthen local institutions, promote knowl-
edge exchange, and prepare clients for reform 
and program implementation. Technical assis-
tance now constitutes more than two-thirds of 

themes of a project that represent the largest 
share are denominated “primary,” while those 
receiving smaller shares are called “secondary.” 

Up to July 1, 2014, a Water Sector Board 
was responsible for the quality of activities 
associated with water, sanitation, and flood 
protection, which included 10 sectoral codes 
and 1  thematic code. Water-related projects, 
however, were mapped not only to the water 
sector and theme, but also to other sectors 
and themes such as agriculture, rural devel-
opment, and urban development. 

The following sections summarize the 
water portfolio to gain insight into the profile 
of the Bank’s water-related operations. For 
this publication, the water portfolio was 
divided into (a) lending and (b) analytical and 
advisory activities (AAAs).  

Lending 
The active water portfolio as of April 30, 2014, 
was worth US$33 billion.4 It included 272 active 
projects in the following subsectors: water sup-
ply and sanitation, flood protection, irrigation, 
and hydropower. Water supply and sanitation 
was the largest subsector, accounting for 63 
percent of water lending. Irrigation was the 
second largest (20 percent), followed by hydro-
power (9 percent) and flood protection 
(8  percent). A little less than half (43  percent) of 
water financing goes to projects mapped to sec-
tors other than water. The sectors and themes 
with the largest share of water components are 
agriculture and rural development (23 per-
cent), urban development (34  percent), and 
energy (10 percent). The water portfolio’s total 
value nearly doubled over the last five years. 
Lending in fiscal year 20145 (third quarter) rose 
to US$6.9  billion,6 representing about 18 per-
cent of the Bank’s portfolio.  

Figures 2.1 and 2.2 show some of the subsec-
tor and geographic trends in water lending in 
the past six years. 

Analytical and Advisory Activities 
The water portfolio also includes significant 
dollar amounts for AAAs that support and 
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projects and hydropower projects in the total 
number of projects is close to 8 percent each.

Table 2.3 shows the number of projects 
mapped to non-water sectors that were never-
theless considered water related because 
water resources management was coded as a 
theme. Of these, the agriculture, fishing, and 
forestry sector is the non-water sector with the 
largest number of water-related projects. 

all AAAs (72 percent). In the period covered in 
figures 2.1 and 2.2, Africa and East Asia and the 
Pacific accounted for the largest share of AAAs. 
In fiscal year 2014 (as of the end of the third 
quarter), about 70 percent of AAA was dedi-
cated to water supply and sanitation.7 These 
nonlending activities generally mirror the 
breakdown of investment operations. 

Sector and Theme Components in the 
Water Portfolio
During the period analyzed (between fiscal year 
2002 and fiscal year 2012), the Bank used sector 
and theme codes to classify projects.8 Table 2.2 
shows the total number of water projects by 
water sector code. A total of 179 water supply 
and sanitation projects and 176 general water, 
sanitation, and flood protection projects were 
identified. Together, they represent nearly half 
of all water-related projects. Irrigation and 
drainage projects represent the third largest 
sector, with 14.6 percent of the total number of 
projects. The share of both flood protection 

Table 2.2 Total Water-Related Lending, by Water 
Subsector 

WATER SUBSECTOR TOTAL NUMBER OF 

WATER SECTOR 

PROJECTS 

Flood protection 58

General water, sanitation, 
and flood protection

176

hydropower 60

Irrigation and drainage 113

Ports, water, and shippinga 12

Public administration: Water, 
sanitation, and flood 
protection

28

Wastewater and sewerage 44

Water supply and sanitation 179

Total 670

Source: Water Portfolio analysis. World bank business Warehouse 
database.

a.  since 2011, ports, waterways, and shipping have been coded under 
the transport sector. before 2011, they belonged to water. Thus only 
projects approved between fiscal year 2002 and fiscal year 2011 are 
considered as water related under this category. 

Table 2.3  Water-Related Projects with Non-Water 
Sector Codes 

NON-WATER SUBSECTOR NUMBER OF 

WATER-RELATED 

PROJECTS

Forestry 4

General agriculture, fishing, 
and forestry

73

health 6

Public administration: 
Agriculture, fishing, and 
forestry

5

Other non-water sectors with 
water resources management 
as a theme

11

Total 99

Source: Water Portfolio analysis. World bank business Warehouse 
database.

In the pool of 775 projects identified, other 
non-water sectors with water-related projects 
that did not have water resources manage-
ment coded as a theme (6 in total) were also 
identified. The non-water sectors represented 
were strongly linked to climate change (1 proj-
ect), environment and water resources man-
agement (3), natural disaster management (1), 
and land administration and management (1). 

ANNEX 2A. DATA ANALYSIS 
METHODOLOGY OF THE SECTOR 
AND THEME COMPONENTS IN THE 
WATER PORTFOLIO

Annex 2A is available online at https:// 
openknowledge.worldbank.org/handle/10986 
/22952.

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
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 8. See annex 2A for a description of the  
methodology used in the data analysis.  
Annexes to this book are available online at  
https://openknowledge.worldbank.org 
/handle/10986/22952.
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NOTES

 1. The Water Resources Strategy was rooted in the 
1993 policy paper (World Bank 1993). Since 2003, 
water sector thinking has also been informed by a 
2010 sector study on water and development (IEG 
2010), an implementation progress report (World 
Bank 2010), and various other analytical work and 
portfolio reviews. 

 2. Agriculture, fishing, and forestry; public 
 administration, law, and justice; information 
and communications; education; finance; health 
and other social services; energy and mining; 
 transportation; water, sanitation, and flood 
 protection; and  industry and trade.

 3. Economic management; public sector  governance; 
rule of law; financial and private sector  development; 
trade and integration; social  protection and risk 
management; social  development, gender, and 
inclusion; human development; urban develop-
ment; rural development; and environment and 
natural resources management.

 4. The figures in this chapter are given only as 
 background for the process of evaluating the cur-
rent and future significance of remote sensing in 
the Bank’s water-related activities. They are also 
used to illustrate orders of magnitude or geo-
graphic and time-based relative comparisons. They 
should not be considered official Bank figures.

 5. The Bank’s fiscal year runs from July 1 to June 30.
 6. Data as of April 4, 2014. Fiscal year 2014 

 commitments include projected pipeline. Data  
for the thematic code “water resources  
management” are not included in the total to 
avoid double counting, since water resources 
management is a cross-cutting theme.

 7. The strategic and analytical work conducted 
by the Bank’s Water Sanitation Program is not 
included these figures.

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952


INTRODUCTION

This chapter presents an overview of how 
remote sensing (RS) has been used in the Bank 
to date. It begins with a summary of the inter-
nal and external programs or “windows” 
through which RS data have been made avail-
able for use in projects funded or managed by 
the World Bank, including those related to 
water resources management. These pro-
grams are often specific partnerships with 
public or private entities such as the National 
Aeronautics and Space Administration 
(NASA), the European Space Agency (ESA), or 
corporations selling digital imagery or soft-
ware products. The nine windows identified 
are described briefly, and activities sponsored 
by these programs are summarized; most of 
these programs are still active.1 The chapter 
then presents the results of a Bank portfolio 
review conducted to identify those operations 
that have used RS products in some way, as 
well as some considerations for future use 
derived from a limited survey of Bank staff.

INTERNAL INITIATIVES

For a long time, remote sensing was a special-
ized niche outside the mainstream of the Bank’s 
work. As partnerships for remote sensing have 
become more commonplace and the range of 
available products has widened, awareness has 
grown among practitioners at the World Bank. 
In recent years, some efforts have been made to 
integrate initiatives and organize the use of this 
tool within the Bank. This process has been a 
learning experience, and not every application 
has been successful; nevertheless, capacity and 
experience are being built up. The following sec-
tions summarize these activities within the Bank 
and provide links to further resources. More 
details may be found in the consolidated matrix 
of those programs (see table 3A.1 in annex 3A, 
available online at https://openknowledge 
.worldbank.org/handle/10986/22952.

Earth Observation for Development
Earth Observation for Development is intended 
to be a single hub for all Earth observation 

The World Bank and Remote 
Sensing

CHAPTER 3
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was €1.3 million. In addition, ESA provided 
access to EO data from 15 satellite missions, for 
a total value of €1 million. Those satellite mis-
sions included the European Remote Sensing 
Satellite (ERS), Envisat, RapidEye, the Satellite 
for Earth Observation (SPOT), Cosmo-Skymed, 
TerraSAR-X, Radarsat, GeoEye, and WorldView. 
Five dedicated, hands-on training workshops 
were organized in Brazil, Indonesia, Papua New 
Guinea, and Zambia and at the headquarters of 
the Indian Ocean Commission. The ESA and 
the World Bank published the results of 
EOWorld in 2013 (European Space Agency and 
World Bank 2013). 

Following the success of the first round of 
the program, ESA extended its financial and 
technical supervision support, launching a call 
for proposals for a new set of activities to pro-
duce and deliver EO information services. 
These activities focused on four themes: 
(a) urban development, (b) disaster risk man-
agement, (c) forestry, and (d) oceans (World 
Bank 2012).

U.S. Government and World Bank  
Agreement 
A memorandum of understanding was signed 
in March 2011 between the World Bank and 
the U.S. government. Its goal is “supporting 
developing countries’ effort to create a water-
secure world and to fight water scarcity and 
poor water quality.” 

Under this agreement, where possible, U.S. 
government agencies such as NASA, the 
National Oceanic and Atmospheric Adminis-
tration (NOAA), U.S. Geological Survey, and 
U.S. Department of Agriculture will provide RS 
data and the means necessary to interpret and 
employ them. 

The following categories have been identi-
fied as priority areas for the use of RS data: 
 climate variability and change, agricultural sys-
tems, and water systems planning and manage-
ment. The data will support (a) sound 
management of water resources, (b) reliable 
and sustainable access to an acceptable quantity 

(EO) activities occurring within the Bank.2 
In combination with the GeoWB data portal,3 
it is part of a process of building internal capac-
ity for managing geospatial data sets devel-
oped through World Bank operations. 

Earth Observation for Development seeks 
to capture and integrate knowledge products 
based on RS data that had previously been 
developed in isolation. It aims to create a uni-
fied source for existing RS products that can 
also be expanded to incorporate new products 
as they are created. Its larger goal is to main-
stream RS data and products—making them 
available to the broader community of develop-
ment practitioners, along with best practices, 
lessons learned, and experiences pertaining to 
their use. This involves raising awareness of 
the role that remote sensing can play in sus-
tainable development and of the range of exist-
ing RS products and services. It is aligned with 
the Bank’s recent “Open Data, Open Knowl-
edge, Open Solutions” policy reforms. 

Currently, Earth Observation for Develop-
ment provides access to data and products 
from three sources: (a) the EOWorld partner-
ship with the European Space Agency, (b) the 
agreement between the World Bank and the 
U.S. government, involving several agencies, 
and (c) the agreement between the World Bank 
and the Japan Aerospace Exploration Agency 
(JAXA). Each of these is discussed briefly in 
the following sections. 

EOWorld European Space Agency 
While the partnership between the World 
Bank and the European Space Agency is 
anchored in the Bank’s Urban, Rural, and 
Social Development Global Practice, it brings 
together expertise from all regions of the world 
and all the Global Practices of the World Bank. 

The EOWorld partnership was established 
in two stages. In 2008, the pilot program started 
with 3 activities; in 2010, the partnership 
expanded to involve 12 activities. Those 12 activ-
ities were selected after a competitive “call for 
proposals.” The total value of the 12  activities 
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objective is “to facilitate cooperative water 
resources management and development in the 
Nile River basin. This would be achieved 
through the provision of targeted technical 
assistance to the initiative’s member countries 
and broader stakeholders, to facilitate coopera-
tive activities, improve integrated water 
resources planning and management, and iden-
tify and prepare studies of potential investments 
of regional significance” (World Bank 2012). 

The technical assistance to be provided 
under NCORE will include geospatial analysis 
to improve the analysis of existing RS data sets 
on wetlands, which will facilitate the prepara-
tion of future investments. Additional efforts 
include improving public access to the existing 
database, sharing knowledge among countries 
and institutions, and establishing a real-time 
hydrometeorological portal.

and quality of water to meet human livelihood, 
ecosystem, and production needs, (c) efforts to 
lower the risk of hydrologic events, and (d) reha-
bilitation of degraded watersheds. These RS 
tools, developed by U.S. government agencies, 
hold potential for developing countries to 
improve productivity and reduce conflict, while 
also increasing resilience to climate change.4 

Under this agreement, several knowledge-
exchange events have been organized to build 
familiarity between NASA and World Bank 
staff and to begin developing tools and 
approaches to using remote sensing for 
development.

Japan Aerospace Exploration Agency 
JAXA and the World Bank signed an agree-
ment in 2008 for the use of data from the 
Advanced Land Observation Satellite (ALOS). 
Developed and operated by JAXA, ALOS pro-
vided high-resolution images of the regions of 
Latin America and the Caribbean where severe 
impacts of climate change were expected.

ALOS images and data were used in support 
of World Bank adaptation projects in Bolivia, 
Colombia, Ecuador, Mexico, the Andes region 
of Peru, and the West Indies. These images 
were used to detect changes in vulnerable eco-
systems regionwide, which contributed to the 
development of adaptation programs in the 
region. Images taken by ALOS of the tropical 
glaciers in the Andes were used to assess gla-
cier dynamics under an adaptation project in 
that area. As of April 15, 2008, total investment 
in adaptation in Latin America, including 
World Bank support, totaled US$90 million. In 
2011, JAXA officially terminated the operation 
of ALOS because of a failure of the satellite’s 
power system. This effectively ended the 
collaboration.

Nile Cooperation for Results Project 
The Nile Cooperation for Results Project 
(NCORE) is one of the latest investment proj-
ects carried out by the World Bank under the 
Nile Basin Initiative (box 3.1). Its development 

The Nile Basin Initiative

BOX 3.1

The nile basin Initiative (nbI) is a cooperative, intergovernmental partner-
ship among the 10 countries whose territories occupy the basin of the 
nile River in Africa: burundi, the democratic Republic of congo, the Arab 
Republic of egypt, ethiopia, kenya, Rwanda, south sudan, sudan, Tanzania, 
and Uganda; eritrea has observer status. 

The nbI provides a forum for engaging dialogue on the joint manage-
ment of the river and its shared watershed, sharing information, and 
 building capacity. notable among these efforts is the creation of a nile 
decision support system to integrate the relevant information to assist 
decision makers in formulating policy for the basin. The nbI also includes 
some funding for common activities, plus investments in water manage-
ment at the subbasin level. In the 15 years since the nbI’s inception, more 
than a dozen projects have been completed in the nile basin, often man-
aged through the World bank.

Rs and geospatial data and information products are an important 
part of the information-sharing and capacity-building efforts of the nbI. 
many of the investment projects undertaken have incorporated elements 
of geospatial data gathering or improved data interpretation and have 
built institutional capacity to create and manipulate geospatial data.

The nAsA nile Project is working with the eastern nile Technical 
 Regional Office (enTRO), which is part of the nbI. Using Tropic Rainfall 
measuring mission data, enTRO provides flood forecasts for the eastern 
nile basin. The nAsA nile Project has also produced analyses of the water 
balance in the nile basin using remote sensing data.
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The first phase of TIGER-NET focused on 
consultation, review, and analysis of user needs 
and current technological capacity and demand 
for the application. During this phase it was 
concluded that the various institutions had 
very similar system requirements but that their 
application requirements and information 
needs varied according to the specific chal-
lenges posed by different water basins. In its 
second phase, the program will aim to extend 
the number of water authorities involved as 
host institutions for the WOIS.

More details on World Bank projects with 
a  TIGER-NET component may be found in 
table 3A.2 in annex 3A (available online).

NASA SERVIR
SERVIR—the Regional Visualization and Moni-
toring System—was launched in 2004 as a col-
laborative effort of NASA, the U.S. Agency for 
International Development, the World Bank, 
and the Central American Commission for Envi-
ronment and Development. It provides satellite-
based EO data and science applications to help 
developing countries in Central America, East 
Africa, and the Himalayas to improve their envi-
ronmental decision making with regard to the 
nine societal benefit areas identified by the 
Group on Earth  Observations—disasters, eco-
systems, energy, biodiversity, weather, water, cli-
mate, health, and agriculture. Other partners 
within the U.S. government are NOAA, U.S. 
Environmental Protection Agency, U.S. Forestry 
Service, and U.S. Geological Survey.

SERVIR facilitates decision making by gov-
ernment officials, managers, scientists, research-
ers, students, and the general public by providing 
Earth observations and predictive models based 
on data from orbiting satellites, ground- based 
observations, and forecast models. Since the 
eventual goal of SERVIR is to become self- 
sustaining (with host nation support), it works 
closely with governments and international 
organizations.7 SERVIR has participated in 
training sessions, brown-bag lunch seminars, 
and presentations at Bank-organized events.

GeoWB, GeoCenter, and Spatial Help Desk
Facilities such as GeoWB and Spatial Help 
Desk provide visualization services for RS data 
and have created data repositories for projects 
across the World Bank, making RS data acces-
sible to specific projects. GeoWB is an internal 
spatial data platform, managed by the World 
Bank’s GeoCenter, that enables data sharing 
and map visualizations. It was launched to 
work on sustainable development in collabora-
tion with Esri, the leading geographic informa-
tion system (GIS) software provider. GeoCenter 
not only supports the GeoWB data portal, but 
also provides GIS and mapping services. Spa-
tial Help Desk elaborates maps and other spa-
tial products such as interactive files containing 
regular maps, three-dimensional maps, and 
spatial data analyses. 

EXTERNAL INITIATIVES

This section briefly discusses external initia-
tives in which the Bank participates. 

TIGER-NET
The Bank decided to participate in the TIGER 
Initiative, launched by ESA in March 2012, in 
response to growing needs for information 
related to integrated water resources manage-
ment in Africa. TIGER-NET is a major compo-
nent of the TIGER Initiative5 and will run for 
three years, with a total budget of €1.5 million. 
TIGER-NET supports the assessment and 
monitoring of water resources from the water-
shed to the cross-border basin level aimed at 
(a) developing an open-source Water Observa-
tion and Information System (WOIS),6 for 
monitoring, assessing, and taking stock of 
water resources using EO data and (b) provid-
ing capacity building and training to enable 
African water authorities to exploit the full 
capacities offered by satellites such as Sentinel 
and EO data. These EO products and services 
are used to monitor, assess, and manage water 
resources.
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insight into specific ways in which RS data 
have been used. These include filling data gaps, 
serving as input for modeling to evaluate a 
project’s impact, supporting basin planning in 
prefeasibility studies, or helping to boost proj-
ect performance or operational quality.12 

More details on the lending and AAAs 
reviewed in this context may be found in 
table  3A.2 in annex 3A (available online). 
Selected examples of EO applications in Uttar 
Pradesh, India, and in Malawi and Zambia are 
presented in appendix A of this publication.

General Trends
A portfolio review identified 61 lending proj-
ects and 16 AAAs approved between July  1, 
2001, and April 30, 2014, that used remote sens-
ing (figure 3.1). The breakdown of total lending 
and AAA by subsector is similar to the in-depth 
breakdown of the portfolio (see chapter 2).13 

The analysis indicates that the use of RS 
applications in lending and AAA has increased 
steadily over the years, especially since 2007. 
Yet only a small share of all the water projects 
identified in the period under review (about 
10 percent) actually used, are using, or plan to 
use RS technologies or approaches in their 
operations or AAA. 

Open Landscape Partnership Program 
The Open Landscape Partnership Program is a 
global joint initiative of satellite data providers, 
distributors, processors, and end users.8 Its 
objective is to create a community of practice 
that will expand demand for open access, high-
resolution satellite imagery (2-meter resolu-
tion and a 1-month frequency or better). The 
data could be used to further public account-
ability, transparency, and sustainability of nat-
ural resources management for ecologically 
important areas.

Subscribers to the platform’s pilot phase 
will get free Web access  to available World-
View-2 satellite imagery for the stated area of 
interest, online mapping tools, and designated 
server space. They will be able to use these 
assets to develop and  document their own 
crowd-mapping projects of critical landscapes 
and hotspots, in exchange for agreeing to con-
tribute the documented results (including Web 
maps) to the platform’s project library. The lat-
ter would be available, through an online 
forum, for review, analysis, and discussion by 
peer practitioners.9 

RS APPLICATIONS IN WORLD BANK 
WATER–RELATED PROJECTS AND 
ANALYTICAL AND ADVISORY 
ACTIVITIES 

Based on the results of the portfolio review dis-
cussed in chapter 2,10 this section identifies the 
areas where RS technologies have been used in 
the Bank’s Water Global Practice and looks at 
the areas where RS tools could be applied.11 
The results presented in this section provide 
an overview of the RS applications in Bank 
lending and analytical and advisory activity 
(AAA) related to water, aimed at identifying 
(a)  the water challenges that the RS applica-
tions address, (b) the current operational uses 
of RS tools, and (c) the relationship between 
RS tools and specific development objective(s) 
of the project or AAA. Thus the analysis gives 

Source: Rs Portfolio analysis. World bank data.

Note: data for 2014 have not been taken into account because this analysis only covers the first four 
months of 2014. AAAs = analytical and advisory activities.
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management. Other than water resources 
management, climate change and natural 
disaster management are the two cross-
sectoral themes showing the largest number of 
RS applications in water projects and AAA. 
Not only is this conclusion reflected in the 
project, AAA sector, and theme, but the appli-
cations themselves show that multivariate 
inputs from Earth observation have been con-
sidered alongside water-related variables. 
Thus applications in both water-dedicated and 
non-water-dedicated projects14 and AAAs may 
also encompass non-water components. 

As shown in table 3.1, the share of water 
resources management in water-related projects 
(lending) using remote sensing is 57 percent, 
whereas the combined share of climate change 
and natural disaster management themes is 
26  percent. Rural services and infrastructure, 
although relatively small, ranks third as primary 

About 78 percent of total lending and AAA 
combined are water-dedicated activities (see 
table 3A.2 in annex 3A (available online))— 
that is, activities whose investments in water or 
the share of water-coded subsectors represent 
50 percent or more of the Bank’s total commit-
ment for that particular project or activity.

As figure 3.2 shows, Africa has the highest 
use of RS applications (39 percent), South Asia 
has the second highest (18 percent), and the 
Middle East and North Africa ranks third 
(15  percent). In Africa, RS applications have 
been used at the basin and subregional level. As 
discussed, much attention has been given to 
investing in RS technologies to address trans-
boundary watershed management challenges 
often involving more than two countries or two 
or more projects. This partly explains the rela-
tively high number of countries and projects in 
the Africa region using RS technologies. 

Unlike the codes, which are sector specific, 
themes can be attached to both water and 
other subsectors (table 3.1). A significant share 
of water-related lending and AAA that have 
used (or planned to use) remote sensing have 
done so in cross-cutting areas nearly as often 
as they have in the area of water resources 

Table 3.1 Number of Projects Using Remote  Sensing 
in Water-Related Lending and Analytical and 
 Advisory Activities, by Primary Theme

PRIMARY THEME LENDING AAA

Other than water resources 
management

climate change 6 3

environmental policies and 
institutions

0 1

Infrastructure services for 
private sector development

0 1

land administration and 
management

2 0

natural disaster management 10 3

Pollution management and 
environmental health

1 0

Rural policies and institutions 1 0

Rural services and 
infrastructure

5 0

Urban services and housing 
for the poor

1 1

Water resources management 35 7

   

Total 61 16

Source: Rs Portfolio analysis. World bank data. 

Note: AAA = analytical and advisory activity.
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• Evaluation of project impact on agricultural 
water management. Integrated landscape 
management and agricultural intensifica-
tion, climate-smart agriculture, and agri-
cultural value chains

• Agricultural water-saving measures and 
support services. Irrigation planning and 
monitoring; reduction of nonbeneficial 
evapotranspiration; farm-level resilience 
to climate change, raising farm income by 
increasing farm yields and output value; 
planning and training tools at micro-
watershed levels; maps and climate infor-
mation for use by farmers in decision 
making; agroclimatic advisory risk sys-
tems; improved Web-based information on 
markets, postharvesting, and value addi-
tion; farm participatory field trials and 
demonstrations for specific technologies; 
and research management to strengthen 
the institutional arrangements for longer-
term, needs-based research identification, 
technology transfer, research quality assur-
ance, and coordination of rain-fed agricul-
ture and watershed management research

non-water theme. Among the AAAs, climate 
change and natural disaster management com-
bined share 38 percent of all water-related activ-
ities, while water resources management takes 
the lead with 44 percent. 

Results by Subsector
Table 3A.2 in annex 3A (available online) lists 
the entire sample of World Bank water-
related projects and AAAs that have used (or 
planned to use) remote sensing; it also 
includes a brief  description of the RS applica-
tions used in each project. Table 3.2 summa-
rizes that table. Additional information about 
the relevant sectors is presented in annex 3A, 
which highlights the attributes related to the 
use of remote sensing, their characteristics, 
and any trends, by subsector. 

World Bank Potential Demand for RS 
Applications 
As discussed at the beginning of this chapter, 
several windows provide water-related RS 
assistance and products within the World Bank. 
At present, the nature of both actual and planned 
uses of RS applications varies widely within the 
Water Global Practice: 

Table 3.2 Use of Remote Sensing in World Bank Lending and Analytical and Advisory Activities, by Water Subsector

CATEGORY SECTOR

NUMBER OF PROJECTS NUMBER OF AAAs TOTAL 

(PROJECTS 

+ AAA)

TOTAL 

(%)PRIMARY SECONDARY TOTAL PRIMARY SECONDARY TOTAL 

1 Flood protection 9 0 9 2 0 2 11 14

2
general water, sanitation, 
and flood protection

19 3 22 10 3 13 35 45

3 Irrigation and drainage 16 3 19 0 0 0 19 25

4
Public administration: water, 
sanitation, and flood 
protection

3 0 3 0 0 0 3 4

5
Renewable energy and 
hydropower

3 0 3 0 0 0 3 4

6 Wastewater and sewerage 1 0 1 0 0 0 1 1

7 Water supply and sanitation 2 1 3 1 0 1 4 5

*
general agriculture, fishing, 
and forestry 

1 0 1 0 0 0 1 1

 Total   61   16 77 100

Note: AAA = analytical and advisory activity.

* not a water subsector per se, but has water resources management as a theme.
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for forecasting and early warning systems 
as well as for disaster preparedness, disas-
ter management, and disaster response. 
Additionally, it could be used to improve 
resilience to  climate variability and change.

• Agricultural systems. The agriculture sec-
tor in developing countries is particularly 
vulnerable to climate change and can ben-
efit greatly from RS assistance, particularly 
toward (a) mapping evapotranspiration for 
use in estimating water losses and monitor-
ing irrigation water use and (b) monitoring 
the performance of cropping systems for 
use in improving the management of both 
irrigated and rain-fed systems.

• Water systems planning and management. 
Comprehensive planning of water systems 
requires the ability to estimate surface water 
and groundwater fluxes in river basins. 
Existing RS systems can provide new tools to 
monitor or estimate various elements of the 
hydrologic cycle, including precipitation, 
evapotranspiration, flows, changes in avail-
able surface water and groundwater, water 
storage, aquifer recharge, and inundation. 
These data will also facilitate basin plan-
ning, inflow forecasting, systems operations, 
and water infrastructure management.

ANNEX 3A. WORLD BANK REMOTE 
SENSING PROGRAMS

Annex 3A is available online at https:// 
openknowledge.worldbank.org/ handle/ 
10986/22952.

ANNEX 3B. METHODOLOGY AND 
RESULTS OF THE USE OF EARTH 
OBSERVATION APPLICATIONS BY 
WATER SUBSECTOR

Annex 3B is available online at https://  
openknowledge.worldbank.org/ handle/ 
10986/22952.

• Use of modern, basin-wide water resources 
information systems. Water information 
system platforms 

• Feasibility studies. Irrigation projects, 
hydropower stations, and use of digital 
elevation models for reservoir inundation 
models and site identification

• Basin planning, monitoring, and forecasting. 
Watershed planning and monitoring

• Transboundary options for flood risk miti-
gation. Pilot nonstructural flood prepared-
ness and emergency response activities; 
regional flood forecasting, warning, and 
communication systems; regional data 
sharing on flood operation mechanisms; 
urban mapping of buildings and infrastruc-
ture; urban growth monitoring; regional 
assessment of water resources manage-
ment on shared regional aquifers

• Investment planning and basin decision sup-
port systems. Systematic information base 
and tools for water investments in systems 
contexts; identification of different types 
of infrastructure considered in the calcula-
tion of water balance

• Institutional and community planning 
frameworks for addressing environmen-
tal and social issues. Basin-wide planning 
(capacity building and coordination of gov-
ernment institutions in decision making 
for the sustainable use and conservation of 
water resources) and conservation of habi-
tats and biodiversity. 

However, a survey of task team leaders indi-
cated that remote sensing could also be useful in 
the following categories and operational areas:15

• Climate variability and change. As the cli-
mate and its variability change, remote sens-
ing could be useful for countries seeking to 
improve their capabilities in (a)  managing 
droughts and floods, (b)  reducing other 
forms of disaster risk, and (c)  mitigating 
the impact of climate change. Against this 
background, remote sensing could be used 

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
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 8. The Open Landscape Partnership Program is a 
joint initiative of Scanex Research and Develop-
ment Center, Transparent World, and Digital-
Globe, Inc.—the platform’s founding partners—in 
collaboration with NASA, OpenStreetMap, 
 University Geoportals Consortium, the World 
Bank, the World Resources Institute, the World 
Wide Fund for Nature, Yandex, and various par-
ticipants of the Critical Ecosystems Partnership 
Fund, the Global Forest Watch 2.0, the Global 
TIGER Initiative, the Global Snow Leopard 
 Initiative, and the Save Our Species program. See 
http://www.openlandscape.info. 

 9. For information on the platform, see http://www 
.openlandscape.info/index.php?option=com_cont
ent&view=article&id=18&Itemid=2.

 10. Updated to fiscal year 2014.
 11. For more details on the methodological approach 

used and the data analyzed, see annex 3B (avail-
able online at https://openknowledge.worldbank 
.org/handle/10986/22952. 

 12. This “narrow” review fails to specify (a) the 
quality and quantity of data generated to fill 
information gaps, (b) whether the information 
gathered has been validated or the models have 
been calibrated, (c) the resolutions used, and (d) 
the extent to which RS applications significantly 
influenced a project’s performance or the deci-
sions about it. The limitation of this review pre-
cludes an in-depth analysis of the effectiveness 
of each RS application. 

 13. See chapter 2 for the total number of projects 
per subsector. However, unlike the results of the 
portfolio analysis, where the water supply and 
sanitation subsector represents a major share of 
the whole portfolio, in this chapter this subsector 
represents one of the smallest portfolio shares 
using remote sensing.

 14. A water-dedicated project or activity is a project 
or activity whose share of lending commitment 
for water-related activities is greater than or equal 
to 50 percent; a non-water-dedicated project or 
activity is a project or activity whose share of 
lending commitment for water-related activities is 
less than 50 percent. 

 15. These categories are derived from a small survey 
conducted among Bank task team leaders active 
in the water sector to get a sense of their poten-
tial demand for RS applications. Given the very 
limited nature of the survey, the results are only 
indicative.
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INTRODUCTION

Given the challenges discussed in chapter 1 
and the World Bank water-related activities 
annotated in chapter 2, this chapter turns to 
the data requirements and characteristics of a 
range of water resources activities. It identi-
fies the hydrometeorological data that each 
specific kind of activity could use or benefit 
from if those data were available and links 
those activities to water-related sectors and 
subsectors of World Bank projects. Other 
types of data such as land cover, land subsid-
ence, and topography are included in this 
characterization, as they are relevant to hydro-
logic applications as well. For simplicity’s sake, 
this chapter refers to all of these variables as 
hydrometeorological variables. 

Tables 4A.1 and 4A.2 in annex 4A (available 
online at https://openknowledge.worldbank.org/
handle/10986/22952) give a detailed character-
ization of the key hydrometeorological variables 
that are necessary for various water resources 
activities, ranging from policy and planning to 
design, operations, and disaster management. 

This chapter enumerates the variables included in 
this assessment and discusses how each one is rel-
evant to specific types of water resources activi-
ties within World Bank sectors and themes. Next 
it addresses the issue of data availability. Lastly, 
the changing character of operational hydrology 
is briefly reviewed, concluding with a look ahead.

KEY DATA

Table 4A.1 in annex 4A (available online) pres-
ents the hydrometeorological variables deemed 
crucial for a specific water resources activity. 
The 17 variables considered in this analysis are 
precipitation, temperature, evapotranspiration 
(ET), normalized difference vegetation index 
(NDVI), streamflow, soil moisture, wind speed, 
groundwater recharge, groundwater level, 
 surface water level, snow or ice cover, snow or 
ice water equivalent, land cover change, pump-
ing and groundwater change, land subsidence, 
elevation, and water quality. The annex gives a 
brief description of these variables and explains 
how to read table 4A.1. The variables that can 

Key Data Needs for Good 
Water Management

CHAPTER 4
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hydropower potential of available water 
resources

• Design irrigation. Design water extrac-
tion and efficient distribution through an 
irrigated area to satisfy crop water needs; 
topography, soil moisture, and evapotrans-
piration are important variables in this 
design process

• Design wastewater. Design systems that 
will efficiently collect gray and black waters 
from the point of use and treat them to the 
desired standard of quality before reusing 
or releasing them into the environment

• Design water supply systems. Design sys-
tems that will efficiently supply water of 
the desired quality for drinking and other 
uses in a specific area

• Disaster management. Mitigate the risk 
and impact of disasters and manage disas-
ters when they occur

• Energy (other than hydropower). Develop 
a mix of energy sources, including eolic 
(wind), solar (equipment production and 
electricity generation), biofuel (irrigation), 
nuclear (refrigeration), and thermal energy

• Food security and crop monitoring. Monitor 
food production and availability, reduce 
human vulnerability, and operate in a 
framework that makes it possible to issue 
alerts and adopt mitigation measures in 
case of food insecurity or famine

• Forest management. Manage for aes-
thetics, fish, recreation, urban values, 
water, wilderness, wildlife, wood prod-
ucts,  forest genetic resources, and other 
 purposes (timber extraction, planting 
and replanting of various species, cutting 
roads and pathways through forests, and 
preventing fire)

• Health issues. Plan, monitor, and manage 
vector-control issues, water quality, pollu-
tion sources, and others

be estimated using Earth observation (EO)—
precipitation, evapotranspiration, soil mois-
ture, vegetation cover, groundwater, surface 
water, snow, and water quality—are described 
in more detail in part II. 

Water Resources Activities, Sectors,  
and Themes
“Water resources activities” are defined as the 
key efforts or tasks related to the planning, 
design, operation, management, administration, 
and governance of water resources. These activ-
ities can be relevant to the water sectors, sub-
sectors, or themes considered by the Bank in its 
operations. In the absence of readily available 
information on the specific hydrometeorologi-
cal variables used in these projects,1 the listed 
activities constitute an implicit link between the 
key data in table 4A.1 and the water-related 
Bank portfolio review presented in chapter 2.

The following activities are considered in 
this publication. They are based on informa-
tion derived from the portfolio review 
described in chapter 2. 

• Comprehensive spatial planning and 
land management. Plan how to use land 
resources to accommodate current and 
future societal needs; design infrastruc-
ture and allocate land to satisfy the need 
for habitation, recreation, environment, 
industry, water, and energy transport

• Design environment. Develop designs that 
allow the preservation of natural ecosys-
tems in human-intervened systems

• Design flood control. Develop designs that 
contain floods up to a certain magnitude 
and associated probability of occurrence; 
use available data to calculate maximum 
probable precipitation and maximum 
probable flood; design hydrograph and 
infrastructure accordingly—by safely rout-
ing and dampening the event

• Design hydropower. Design hydropower 
production facilities adapted to the 
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• Water resources planning. Develop future 
plans for managing water resources and 
necessary infrastructure, practices, and 
regulations

• Water resources policy. Assess the dynamics 
of water budget and resource availability in 
order to issue policies to guide sustainable 
management 

• Water resources management. Satisfy the 
demands for water and balance water 
demand and supply by implementing exist-
ing policies

• Water resources strategy. Translate the 
principles of policy and politics into spe-
cific actions, recognizing that strategy lies 
between policy and planning

• Watershed management. Manage soil and 
water conservation practices and manage 
land use and land cover to ensure con-
tinuing ecosystem services and resource 
availability

• Weather monitoring. Use current-state 
variables and continuity and other equa-
tions to predict future-state variables and 
future weather

• Urban design and management. Design in a 
way similar to comprehensive planning but 
within a city.

Hydrometeorological Variables
The 17 variables selected are important for 
understanding the hydrologic cycle in a spe-
cific basin or region, for quantifying the avail-
ability of water resources in space and through 
seasons and years, and for understanding the 
effects of human extraction and use. Water 
allocation, water permits, and water use—
related to both surface water and groundwa-
ter—should be based on an understanding of 
regional water availability as well as the 
requirements of ecological flows and aquifer 
levels. Sustainability is achieved when water 
uses do not jeopardize either the ability to 

• Marine and estuarine environments. Main-
tain ecosystem services (storm protection, 
wildlife and biodiversity preservation, 
water treatment, fisheries, recreation, and 
other purposes)

• Operations environment. Manage to allow 
the preservation of natural ecosystems in 
human-intervened systems

• Operations flood control. Operate reservoir 
systems to regulate and dampen flood peaks 
and route them safely through the system

• Operations hydropower. Maximize hydro-
power production, while accounting for 
other constraints

• Operations irrigation. Extract and distrib-
ute water efficiently through irrigated 
areas to satisfy crop water needs

• Operations wastewater. Treat gray and 
black water flows being produced in the 
system, reuse treated water, and dispose of 
residues in an efficient way

• Operations water supply systems. Operate 
and ensure water supply to a specific level 
of reliability 

• Terrestrial and freshwater ecosystems. 
Maintain ecosystem services (flood pro-
tection, wildlife and biodiversity preser-
vation, water treatment, recreation, and 
other purposes)

• Transboundary issues. Understand the 
dynamics of use of transboundary water 
bodies, rivers, and aquifers, as well as the 
impacts of different uses on other regions 
and nations; use that knowledge and 
understanding in designing agreements 
and managing allocations to implement 
them coherently

• Water resources administration. Assign 
water rights and implement court rulings 
on disputes, pumping quotas, water fee 
collection, insurance plans, and the like
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(given meteorological forcings and intercep-
tion, that is, water intercepted by plant, leaf, 
and branch surfaces), direct runoff, and 
 infiltration. Infiltrated water can recharge an 
aquifer or subsurface flow, remain in the soil 
as moisture, or return to the atmosphere via 
evapotranspiration. Vegetation cover (mea-
sured with NDVI) is a very significant factor 
for transpiring soil moisture back into the 
atmosphere and influencing infiltration in 
times of rainfall. 

Direct runoff and subsurface flow may all 
contribute to river streamflows, as well as 
baseflows, when the aquifer system is con-
nected to the river. In these cases, groundwa-
ter levels are important because riparian areas 
and wetlands may depend on groundwater. 
Groundwater recharge determines the rate at 
which aquifers are replenished; in natural 
environments, it is determined by the sum of 
contributions to river baseflow, evapotranspi-
ration from connected riparian ecosystems, 
and groundwater flowing down the gradient 
out of the region. Human pumping of ground-
water captures flows that would otherwise 
become baseflow, riparian evapotranspiration, 
or groundwater outflow or deplete the aquifer 
storage (lowering groundwater levels and 
inducing land subsidence). 

The extent of snow cover and snow water 
equivalent are also important variables, as they 
reduce ET losses, increase soil infiltration, and 
constitute a source of water storage that regu-
lates river flows through the spring and into 
the dry seasons on most continents. 

As the many variables that influence and 
govern the hydrologic cycle are spatially het-
erogeneous and vary in time, hydrologic mod-
els are essential to understanding the 
hydrologic system and identifying the main 
drivers of its hydrologic behavior. While 
ground observations provide point measure-
ments, limited in time, which have to be gener-
alized for large regions, remote sensing (RS) 
estimates provide spatial information at 
 varying time frequencies. Thus the addition of 

maintain the same level of use in the long term 
or the functionality of ecosystems to continue 
offering the same level of ecosystem services. 
Understanding the hydrologic cycle and the 
dynamics of water availability in space and 
time is essential to making such assessments. 

The variables considered in this publication 
were selected on the basis of their relevance 
for a range of water resources activities in 
World Bank water-related sectors, subsectors, 
and themes. The selected variables were com-
pared with other classifications of EO variables 
deemed relevant to water management. For 
example, the Group on Earth Observations 
carried out an extensive review of user require-
ments for critical water cycle observations 
(Friedl and Unninayar 2010; Friedl and Zell 
2010; see also Lawford 2014).2 All users in that 
assessment ranked precipitation and soil mois-
ture observations as, respectively, the first and 
second most important variables across soci-
etal benefit areas. 

The selected variables include all of the 15 
variables of perceived priority at the global 
level, although slight differences exist between 
the scope of the variables in Lawford (2014) 
and in this publication—for example, Lawford 
(2014) distinguishes between evapotranspira-
tion in lakes and wetlands as separate from 
other kinds of evapotranspiration, between 
streamflow and river discharge to oceans, and 
between snow cover and glaciers. For practical 
purposes, and given its utilitarian nature, this 
publication does not distinguish between dif-
ferent types of evapotranspiration or stream-
flow or between ice or snow cover and snow 
water equivalent. Consequently, the variables 
included in this publication coincide with 
almost all of the “primary” essential water 
variables as defined in Lawford (2014). 

All of these variables are highly relevant to 
hydrologic assessments. As precipitation rep-
resents the water input into a basin, variables 
such as temperature and wind speed influence 
ET rates. Land cover controls the partitioning 
of precipitation between evapotranspiration 
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patterns of human water use and their cou-
pled dynamics. Unfortunately, the availability 
of data for planning and management pur-
poses is usually less than optimal. Sometimes 
the quality and characteristics of the data are 
such that they do not allow a good analysis 
and interpretation. 

This section starts by discussing the chal-
lenges of data collection, the decline of ground 
observation networks, and how ground mea-
surements stack up against satellite observa-
tions. It then provides an overview of 
operational hydrology to date. Finally, it 
 discusses the future of operational hydrology 
and provides insights into how to bridge the 
gap between management practitioners, on the 
one hand, and RS products and applications, 
on the other hand.

The collection of ground-based observa-
tional records is usually the responsibility of 
national water resources government agen-
cies and regional hydrometeorological ser-
vices. Other agencies and institutions 
(ministries of energy, agriculture, health, and 
transportation) and sometimes even the 
 private sector may also collect water-related 
data. Given the local nature of hydrometeoro-
logical observations and the fact that the col-
lection and storage of data in central, national 
archives are often not systematic, data are fre-
quently kept in a fragmented way. In addition, 
as data are seen as essential information on 
resources and, thus, a source of power, public 
or third-party access may be restricted or dif-
ficult to obtain. This applies especially to 
transboundary basins, whenever there is a 
conflict or tension regarding the allocation of 
water among the member states, as is the case 
of the Nile River.

As to data needs, a distinction can be made 
between the need for (a) long-term data 
records for strategic policy, planning, and 
design and (b) real-time data for monitoring 
and forecasting to serve operational manage-
ment purposes as well as short- and medium-
term decision making.

RS estimates benefits hydrologic modeling, 
both through historical analyses and real-time 
simulations, indirectly supporting water 
resources management and planning.

Relevance of Variables for Each Activity, 
Sector, and Theme
The variables of relevance to each activity can 
be derived by specifying the type of measure-
ments of the variable—for point ( ground-level) 
measurements and areal (RS) measurements, 
respectively. For example, precipitation can 
be measured at ground level with “rain gauge 
networks” and remotely with ground-based 
“radar” and different kinds of “satellite” 
 sensors. 

Longer time series are always desirable, but 
table 4A.1 in annex 4A (available online) pro-
vides two or three values that can be understood 
as “minimum length required,” “adequate for 
use,” and “optimal length,” with the caveat that 
these are approximate values. Available data 
lengths are almost always shorter than desired.

Finally, table 4A.2 in annex 4A (available 
online) provides an initial characterization of 
existing data for the variables of interest. This 
includes some insights into accessibility of 
records, approximate time-series lengths of 
potentially available records, time intervals, 
and an explanation of how specific variables 
are measured or estimated (based on 
RS-derived data). A detailed explanation of 
how values for precipitation, evapotranspira-
tion, soil moisture, vegetation cover, ground-
water, surface water, snow, and water quality 
are  estimated with Earth observation is given 
in chapter 6 of this publication.

AVAILABILITY OF DATA

To be able to manage something, one must 
know what it is that needs to be managed. 
Sustainable use of resources and resilient sys-
tems need data and a thorough understanding 
of natural hydrologic processes as well as 
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agencies, the lack of training and capacity 
building for collecting data and managing data-
bases, and inaccessibility of measurement 
 locations due to logistical problems, safety 
issues, and conflicts.

International organizations attempt to 
over come these challenges by promoting 
 cooperation, data sharing, and capacity build-
ing. Many initiatives have been developed for 
that purpose, often aimed at a specific variable 
or type of data. The International Groundwa-
ter Resources Assessment Centre (IGRAC), for 
example, aims to assess global groundwater 
resources and share the information through a 
centralized system.3 The Global Runoff Data 
Centre (GRDC) is a repository of global stream-
flow data records and can be accessed online.4 

A more recent initiative attempts to 
 connect and link existing efforts and networks 
observing all types of hydrometeorological 
variables. Established in 2001, the Global  
Terrestrial Network–Hydrology (GTN–H) 
links existing networks and systems into a 
network of networks for integrated observa-
tions of the global water cycle (figure 4.1).5 
The GTN–H is a joint project of the Global 
Climate Observing System, the Climate and 
Water Department of the World Meteorologi-
cal Organization, and the Global Terrestrial 
Observing System. It is the largest association 
of international hydrometeorological data 
centers and users worldwide.

In addition, the World Bank has a freely 
available databank, which contains records on a 
broad range of topics and fields related to eco-
nomic development, and a Climate Change 
Knowledge Portal.6 The portal contains histori-
cal data and model projections of future  climate 
under different climate change scenarios. The 
historical data include temperature and precipi-
tation records from observational stations par-
ticipating in the Global Historical Climatology 
Network and merged station-satellite historical 
data records from the U.S. National Centers for 
Environmental Prediction.

The Food and Agriculture Organization also 
has a freely available online database called 

Some of the factors hindering the use of 
data from ground-based monitoring networks 
for water resources operations and planning 
are the lack of real-time data and accessibility, 
coupled with quality control.

Very few observation stations are equipped 
with telemetry systems that allow data to be 
transmitted in real time, resulting in a lack of 
available real-time data. Most recorded data 
only become available after several days, 
weeks, or months, with a lot of readings losing 
most of their value for operational hydrology 
purposes. Many new networks in developed 
countries are being implemented with teleme-
try capabilities, and crowd-sourcing efforts for 
hydrometeorological observations are under 
way. However, the situation in developing 
countries is direr, as the number of observation 
stations is being reduced and existing ones are 
not being properly maintained.

Data are not easily shared across agencies, 
much less between nations, and they are not 
even easily bought, as the data owners some-
times use them to gain leverage or power. 
While some national hydrometeorological 
 services in developing countries may consider 
data a source of revenue to relieve their diffi-
cult budgetary situation, in general, data are 
seen as both a public good and a strategic 
resource.

Many data records lack quality assurance 
and quality control, especially in developing 
countries. Data records can have many flaws, 
often due to the absence of a systematic data-
retrieval methodology (data are collected 
only seasonally or when judged necessary, in 
the rainy season for instance), operator error 
(missing data lead to data gaps or invented 
data values), and deficient archiving (read-
ings are not properly referenced in time and 
space). In addition, data records from differ-
ent locations may be very heterogeneous, due 
to the lack of systematic procedures or 
 uniform standards.

These problems in developing countries are 
caused by several factors, among others, the 
lack of proper funding for hydrometeorological 
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Decline of Ground-Based Observation 
Networks
The number of global, ground-based hydro-
meteorological observations has gradually 
decreased since the 1980s (figure 4.2; 
 Shiklomanov, Lammers, and Vorosmarty 2002; 
Stokstad 1999). This is due to a combination of 

AQUASTAT, developed by the Land and Water 
Division.7 The main database provides five-
year averages for up to 70 variables, by country. 
Other databases have information on dams, 
institutions (by country), sediment yields in 
rivers, water-related investments in Africa, and 
irrigation investments around the world.
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Source: © World Meteorological Organization (http://gtn-h.unh.edu/). Used with permission. Permission required for further reuse.

Note: GCOs = Global Climate Observing system; bGC = biogeochemical global climate (models); Cnes = Centre National d’Études Spatiales;  
fAO = food and Agriculture Organization; GeMs = Global environmental Monitoring system; GnIP = Global network of Isotopes in Precipitation; 
GnIR = Global network of Isotopes in Rivers; GPCC = Global Precipitation Climatological Center; GRdC = Global Runoff data Centre;  
IGRAC = International Groundwater Resources Assessment Centre; IsMn = International soil Moisture network; nsIdC = national snow and Ice 
data Center; WGMs = World Glacier Monitoring service.

Figure 4.1  Components of the Global Terrestrial Network–Hydrology, 2013

http://gtn-h.unh.edu/
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other locations to estimate variables in the 
basin of interest. Remote sensing can also be 
used to monitor ungauged basins. The Predic-
tion in Ungauged Basins Initiative (Pomeroy, 
Whitfield, and Spence 2013; Seibert and Beven 
2009; Sivapalan 2003; Wagener and Montanari 
2011) is a good example of efforts made to 
overcome the problem of lack of data in 
ungauged or poorly gauged basins. Generally, 
prediction efforts for ungauged basins need 
data from gauged basins with similar charac-
teristics to create analogies based on hydro-
logic modeling, frequency analysis, statistical 
correlations, parameter regionalization, and 
remote sensing. In general, such approaches 
allow for the characterization of hydrologic 
regimes, their variability, and tentative predic-
tions in ungauged basins, although the latter 
are associated with significant levels of uncer-
tainty due to their indirect nature.  

factors including budget constraints and the 
ensuing lack of maintenance and operators as 
well as the existence of political turmoil and 
conflicts that sometimes destroy gauges, pre-
vent readings, or halt funding altogether. Even 
in stable, first-world countries, spending bud-
gets for in situ monitoring have shrunk, despite 
the call of the Intergovernmental Panel on Cli-
mate Change for more in situ measurements 
(IPCC 1991). The discontinuation of readings 
in stations with long time series entails the loss 
of “climate memory,” at a time when long-term 
records are becoming critical to documenting 
and understanding  climate variability and change.

Ungauged Basins
In ungauged basins, predictions are still possi-
ble through several approaches. Regionaliza-
tion is a technique that attempts to fill the void 
of missing data by using information from 
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Source: © GRdC (Global Runoff data Centre). Used with permission. further permission required for reuse.

Note: While the historical size of the archive at the GRdC increased substantially between 2004 and 2014 in terms of both the number of stations 
and the volume of data available for the historical period, the number of available stations and data has declined since the 1980s. This decrease is 
due to several factors: (a) a decline in the number of monitoring stations; (b) long quality assurance process times; (c) lack of data sharing by country 
agencies; (d) increased operation of monitoring infrastructure by hydropower companies, which do not share the data due to its strategic value; 
and (e) decentralization of management and monitoring responsibilities, which multiplies the number of agencies that the GRdC has to interact 
with in order to obtain data updates (Ulrich looser, GRdC head, personal communication).

Figure 4.2 Availability of Historical Monthly and Daily Discharge Data in the Global Runoff Data Centre 
Database, 2004 and 2014
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(level of development for different water uses) 
would best achieve the objective. Maas et al. 
(1962) describe the program’s major accom-
plishments. Many of its methods for evaluating 
and ranking design alternatives based on 
 economic efficiency, given a hydrologic con-
text, are still in use today. Using ground obser-
vational records, the planning and design of 
infrastructure as well as management policies 
made use of statistical methods involving 
 stochastic hydrology, frequency analysis, 
 probability distributions, and extreme values.

Evolving from the narrow cost-benefit anal-
ysis through the early inclusion of environ-
mental considerations in management and 
planning—that is, the principles and standards 
of the Water Resources Council (1983)—the 
principles of international water resources 
management are reflected in most regulatory 
frameworks of developed and some develop-
ing countries; the same ground observational 
records are being used in the same way for 
hydrologic and hydraulic considerations. 

Data coverage and access are poor in many 
regions and tend to cluster around large infra-
structure projects that bring in the resources 
for reliable monitoring networks, rather than 
around other, less costly initiatives in water 
supply and sanitation and in irrigation. With 
comprehensive planning and the integration 
of large infrastructure projects with other 
efforts, monitoring networks could be made 
better available to inform a range of water 
resources activities. 

In developing regions of Africa, reservoirs 
and other infrastructure are operated with 
effective, traditional tools such as rule curves 
developed from historical records. Opera-
tions rarely incorporate real-time prediction 
data into the decision-making process. 
Regional centers focus on hydrometeorologi-
cal and agricultural research, such as 
AGRHYMET, with 9 member states in West 
Africa; the  Climate Services Center (CSC) of 
the Southern Africa Development Commu-
nity (SADC), with 15 member states; the 

It is difficult to predict whether the number 
of ground monitoring observations around the 
world will continue to decline or start to rise in 
the near future, although it is likely that large 
areas of the world will remain poorly gauged. 
The decline of existing ground-based networks 
in regions across the world has left satellite 
observations to fill this void. However, it is a 
fallacy to think that the latter can just substi-
tute ground observations. Integrating and 
comparing measurements from the ground 
and from space are very necessary but complex 
and challenging tasks. 

OPERATIONAL HYDROLOGY 
TODAY 

Operational hydrology is the range of activities 
attempting to measure and understand the 
water balance components for use in direct 
practical applications of planning, design, and 
management of water resources. This section 
provides an overview of the current state-of-
the-art of operational hydrology, focused spe-
cifically on developing regions, and how it is 
informing water management, planning, and 
water resources activities in general. 

Ground-based observation time series have 
been and still are the rule for operational 
hydrology, and RS hydrometeorological vari-
ables are rarely, if ever, used operationally— 
and not merely experimentally or as relative 
 guidance—to support decision making. 

Present-day water resources planning, 
design, and operations of hydraulic infrastruc-
ture and management are based on and have 
evolved from the Harvard Water Program 
(1955–60). In that program, academicians and 
senior federal and state agency employees 
worked together on research and training for 
designing and planning water resources sys-
tems. Tools and methods were developed that, 
given a certain planning objective, could 
 determine what set of structural measures, 
operating procedures, and water allocations 
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act as a repository of data, although the data 
are not easily shared, as they are still owned 
by the individual member states. One of their 
main research efforts is to monitor hydrocli-
matic conditions and drought and to prepare 
seasonal forecasts. 

It is also fairly common for these centers to 
hold seasonal climate outlook forums with the 
participation of collaborating institutions, in 
which they integrate all of the climate informa-
tion available and produce a seasonal forecast 
for the incoming rainy season for their region. 
For instance, AGRHYMET integrates informa-
tion from Columbia University’s International 
Research Institute for Climate and Society, the 
U.K. Met Office, Météo-France, the World 
Meteorological Organization, the  African 
 Centre of Meteorological Applications for 
Development, agencies from regional member 
states, and river basin organizations. 

Forecasts are produced by assimilating dif-
ferent types of information based on sea sur-
face temperatures and other climate data and 
are usually issued two consecutive times, as 
the rainy season approaches. Using a simple 
format, the forecasts give the probabilities of 
having an average, above-average, or below-
average rainfall in specific regions. Two fore-
casts, issued in 2013 by AGRHYMET-CILSS 
(Permanent Inter-State Committee for 
Drought Control in the Sahel) and SADC, 
respectively, are shown in figure 4.3. Being a 
probabilistic forecast, whatever the volume of 
actual rainfall is, the forecast is never wrong, 
and its accuracy can only be assessed in the 
long term.

A key question is how these forecasts are 
used, or put in practice, by the member states 
and the practitioner community. In two work-
shops in Africa organized by the United 
Nations Educational, Scientific, and Cultural 
Organization with representatives from 
AGRHYMET, ICPAC, and SADC-CSC, the 
answer to this question remained elusive.  
The representatives of the regional centers 
did not know how the member states used the 

Intergovernmental Authority on Develop-
ment (IGAD) in Eastern Africa’s Climate Pre-
diction and Application Centre (ICPAC); and 
the Regional Center for Mapping of Resources 
for Development. Many of these centers could 
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Figure 4.3 Seasonal Forecasts Issued by Two Regional Centers  
in 2013
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In Asia, such regional climate outlook 
forums are much more recent, having started 
in 2009 for South Asia and in 2013 for South-
east Asia. Their functioning and outputs are 
very similar to those described above.  

The Regional Integrated Multi-Hazard 
Early Warning System for Africa and Asia 
(RIMES) is hosted by the Asian Institute of 
Technology in Thailand and represents a 
 consortium of 31 member states, mainly around 
the Indian Ocean and Central and Southeast-
ern Asia, as well as regional international orga-
nizations and universities.9 The governing 
council is composed of “heads of National 
Meteorological and Hydrological Services and 
national scientific and technical agencies gen-
erating multihazard early warning informa-
tion.” The key services are (a) earthquake and 
tsunami watch provision; (b) weather, climate, 
and hydrologic research and development; and 
(c) capacity building in end-to-end early 
warning.

FUTURE OF OPERATIONAL 
HYDROLOGY: TRANSLATING DATA 
INTO INFORMATION

The future of operational hydrology depends 
on the ability to extract relevant information 
from the abundance of data from different 
sources with different degrees of accuracy and 
precision and to use it for specific decision-
making purposes. Given the increasing 
amounts of RS data available and current tele-
communication capacities, it can be difficult 
for a manager to know what data sources to 
use or trust and how to combine different types 
of information. For any particular planning, 
design, or management decision, it will be 
essential to distill only the relevant informa-
tion from all of the available data. 

Chapter 7 of this publication provides a series 
of guidelines to help decision makers to decide 
whether Earth observation may be useful and, if 
so, to choose the most suitable EO data sources. 

forecast, and neither did the representatives 
of the member states themselves. For several 
 African basins, what may be lacking is an 
overall basin management plan with a clear 
decision- making process based on monitoring 
and observations. 

Similar hydrometeorological networks 
exist in Central America, South America, and 
Asia.8 In Central America, more than 40 cli-
matic forums have been held to date. These 
forums provide climate outlooks for the next 
three months, and they are usually organized 
three times a year—in the summer of the 
Northern Hemisphere at the beginning of the 
rainy season, at the end of the rainy season, 
and at the end of the year when cold fronts 
arrive. The Central America Climate Forum is 
a working group directed by the Regional 
Committee of Water Resources of the Central 
American Integration System Secretariat, 
with the participation of national hydromete-
orological services, universities, private enti-
ties, and other Central American institutions 
(García 2014). The climate outlooks estimate 
the plausible precipitation and temperature, 
obtained by statistical methods, compare the 
estimates with analogous years, and analyze 
results from global and regional models 
regarding sea surface temperatures and distri-
butions of wind, pressure, and precipitation. 

These outlooks are intended to complement 
the projections from the meteorological ser-
vices of individual member states. Once the 
forecasts have been published, working groups 
of specialists from different sectors use them to 
make recommendations for their sector, to 
prepare for the possibility of “above-normal,” 
“normal,” or “below-normal” conditions. The 
sectors concerned are agriculture, fisheries 
and aquaculture, health and nutrition, water 
and sanitation, risk management, and energy. 
In addition, the reports suggest that each 
member state reissue more specific recom-
mendations taking into account the particular 
contexts of each nation for each sector (SICA 
and OBSAN-R 2011).
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and they want to test it, but there is no model 
that will work uniformly well everywhere.” 

This comment illustrates the need to com-
pare products and models. Given a specific 
need, what are the trade-offs between using 
“simple” and complex models and between 
using one set of input data or another? What 
models perform best for what purposes (flood 
forecasting, low flow estimation, forecasting for 
reservoir operations, irrigation, drought moni-
toring)?11 The characteristics of an RS applica-
tion for flood forecasting in a context where the 
main considerations are short time steps, quick 
response times, and accurate  prediction of peak 
flows exceeding a certain magnitude will differ 
strongly from those of an application to support 
reservoir operations, which will be geared 
toward accurately  predicting water volumes 
over longer time steps. The suitability or per-
formance of a specific application can only be 
evaluated against a specific purpose.

Whether an application can be evaluated 
depends on whether it can be calibrated and 
then validated. Even in ungauged basins, 
biases in rainfall12 and other variables can be 
corrected—based on observations from neigh-
boring basins or regions—and these two data 
sets can then be compared to ensure that the 
estimates to be used lie within an acceptable 
range. The usability of RS products for deci-
sion making and planning is determined by 
questions revolving around the degree of 
uncertainty (error estimates), accuracy (the 
extent to which errors are characterized), 
precision (spatial and temporal resolution), 
and timeliness of the data available (for use in 
near real time or as historical data). 

If products are used as inputs for modeling 
applications, it is important to know how errors 
are propagated through model calculations and 
how uncertainties are compounded through 
model cascades. For example, due to the nonlin-
earity of rainfall-to-runoff transformation and 
the spatial variability of rainfall over a basin, 
relative errors in satellite-derived precipitation 
estimates tend to be magnified in the value of 
the flood peaks (Nikopoulos et al. 2010). Thus a 

It is also necessary to characterize the errors 
and uncertainty contained in hydrometeorolog-
ical estimates, as well as in  data merged from 
different sources. Chapter  8 provides insight 
into the accuracy and  validation of the most 
common EO-estimated  hydrometeorological 
variables. The combined use of ground observa-
tions and RS estimates in an integrated manner, 
specifying the uncertainty bounds on final prod-
ucts, guarantees that the best possible use will 
be made of existing resources. Bayesian 
approaches assimilating different types of data 
with associated resolutions and uncertainties 
are appropriate for such purposes. 

In addition, producing the best possible 
estimates by integrating different types of mea-
surements can be tailored to specific manage-
ment and decision-making purposes. What 
will this information be used for, beyond scien-
tific and research purposes (which are what 
most space missions are currently geared 
toward)? In other words, managers and deci-
sion makers need to have a detailed, specific 
answer to the following questions: What type 
of information do you need to support your 
decision-making process? How will you 
change your decisions based on different fore-
casts or information? While these questions 
are two sides of the same coin, they engage dif-
ferent thought processes. During the Pakistan 
floods in 2010 (Mendoza et al. 2010), the infor-
mation was there, but the mechanisms to act 
on it were not reliable. Other cases show that 
tailoring information to management purposes 
can also be a challenge in the developed world. 

Sometimes the specific tasks required to 
attain the overall goals of water management 
agencies—or the means by which they should 
be developed—are poorly defined.10 If the 
management tasks and specific decisions 
required are well defined, tools can be tai-
lored to inform those decisions. It is logical 
that different models and applications will be 
needed for different purposes and different 
questions. In speaking of hydrologic models, 
an AGRHYMET official once acknowledged, 
“Everyone comes here with their own tool 
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 5.  For information on GTN–H, see http://gtn-h.unh 
.edu/.

 6.  The databank is accessible at http:// 
data.worldbank.org/. The Climate Change 
Knowledge Portal is accessible at http://
sdwebx.worldbank.org/climateportal/index 
.cfm?page=climate_data.

 7.  AQUASTAT is accessible at http://www.fao.org 
/nr/water/aquastat/main/index.stm.

 8.  A complete listing is available on the World 
 Meteorological Organization’s website (http://
www.wmo.int/pages/prog/wcp/wcasp/clips 
/outlooks/climate_forecasts.html).

 9. For information on RIMES, see http://www 
.rimes.int/.

 10. An ongoing study of the Water Global Practice 
funded by the Water Partnership Program and 
the Global Facility for Disaster Reduction and 
Recovery, in collaboration with the World Meteo-
rological Organization, tries to assess the current 
status of the national  meteorological and hydro-
logical services in  different regions of the world. 
This study may identify needs for future support 
in strengthening their  capabilities to include 
demand-driven activities in their operations.

 11. The Bank’s Water Partnership Program held a 
“Flood Model Showcase” workshop in  Washington, 
DC, on September 23–24, 2014, to present common 
flood problems and various  models and tools that 
could be used to inform decision making. The aim 
was to reduce  exposure and vulnerability to flood-
related hazards and enhance understanding of 
each model’s “best” application, with an emphasis 
on the  characteristics of the information each tool 
can provide. The report of the workshop is under 
preparation.

12. Most RS estimates yield consistent 
underestimations or overestimations of a 
variable with respect to its measured value on 
the ground. Bias correction techniques can help 
to remove these systematic biases. For example, 
satellite precipitation products consistently tend 
to overestimate rainfall in the tropics, as they 
“observe” it well above the ground surface, while 
some of the rainfall is likely to evaporate before 
reaching the ground. Bias correction helps to 
reconcile these estimates with direct ground 
measurements, as long as the biases are consistent 
over time.
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good understanding is needed of how a specific 
application propagates input errors to the out-
put variables. Next, applications can be tested 
for reliability: How many times did the observa-
tions fall within the uncertainty bounds of each 
application’s predictions?

Acknowledging the limitations of each 
application and being transparent and up-front 
about the uncertainty in its output variables 
form the basis of applicability. Part III of this 
publication presents the results of a (limited) 
literature review regarding the validation and 
accuracy of the most common EO-estimated 
hydrometeorological variables.

ANNEX 4A. KEY DATA FOR WATER 
RESOURCES MANAGEMENT

Annex 4A is available online at https://open 
knowledge.worldbank.org/handle/10986 
/22952.

NOTES

 1. Which hydrometeorological variables, including 
those listed in table 4A.1, were considered in any 
particular Bank operation is not specified in the 
project portfolio databases.

 2.  The initial report (Friedl and Unninayar 2010) 
sought to identify the priorities for Earth 
 observation from the user’s perspective in order to 
inform future EO strategy. It considers user classes 
categorized by type and function. Major groups 
that use water information for decision making 
were identified, and then a broad range of applica-
tions was identified within each of these groups. 
Based on these categories, a list of EOs for the 
water social benefits area was generated for three 
spatial perspectives: global, regional, and local. 
Of 45 observational types of variables  identified 
as being useful for water-related decisions, 
15  variables with a perceived priority at the global 
level were used to identify the most critical EO 
priorities across all social benefits areas. Lawford 
(2014, table 4) displays the list of variables based 
on extensively reviewed user needs for water data. 
The final report is by Friedl and Zell (2010). 

 3.  For information on the IGRAC, see http://www 
.un-igrac.org/.

 4.  For information on the GRDC, http://www.bafg 
.de/GRDC/EN/Home/homepage_node.html

http://gtn-h.unh.edu/
http://gtn-h.unh.edu/
http://data.worldbank.org/
http://data.worldbank.org/
http://sdwebx.worldbank.org/climateportal/index.cfm?page=climate_data
http://sdwebx.worldbank.org/climateportal/index.cfm?page=climate_data
http://sdwebx.worldbank.org/climateportal/index.cfm?page=climate_data
http://www.fao.org/nr/water/aquastat/main/index.stm
http://www.fao.org/nr/water/aquastat/main/index.stm
http://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html
http://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html
http://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html
http://www.rimes.int/
http://www.rimes.int/
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
http://www.un-igrac.org/
http://www.un-igrac.org/
http://www.bafg.de/GRDC/EN/Home/homepage_node.htm
http://www.bafg.de/GRDC/EN/Home/homepage_node.htm
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may arise in a specific context, such as that of the 
World Bank. Chapter 6 discusses the state-of-the-art 
in those areas and provides an overview of the perti-
nent EO sensors with their respective specifications. 
Chapter 7 then provides information on whether the 
use of Earth observation should be considered given 
the specific requirements for spatiotemporal data. It 
provides a simple decision framework for determining 
how EO products might best be used to generate the 
required information and how to select the most suit-
able EO data products for a specific WRM problem. 
Moreover, it highlights guiding questions to ask, once 
EO options are deemed worth exploring for the WRM 
issue at hand. To make it easier to navigate the material 
presented in part II, chapter 7 includes a flowchart 
connecting all of the information.

Those who are already familiar with the material 
covered in chapters 5 and 6 or who have sufficient 
working knowledge of Earth observation may want to 

OVERVIEW

Part II of this publication captures and expands the 
results reported in part I with the following aims: (a) 
to connect World Bank needs in water resources 
management (WRM) issue areas to the range of 
products providing Earth observation (EO) informa-
tion regarding water resources; (b) to describe the 
current state-of-the-art of water resources–related 
Earth observation and provide an  overview of (cur-
rent and future) EO sensors as well as measured 
water resources variables; and (c) to provide guid-
ance on how to decide whether Earth observation 
may be useful for addressing a WRM issue and 
approximate the likely accuracy of the variables 
 estimated through Earth observation. 

Part II may be read in two different ways, depend-
ing on the reader’s background. 

Persons new to monitoring and assessing WRM 
areas using Earth observation may want to begin with 
chapter 5, which provides an idea of the issues that 

Juan P. Guerschman, Randall J. Donohue, Tom G. Van Niel, Luigi J. Renzullo, Arnold G. Dekker, 
Tim J. Malthus, Tim R. McVicar, and Albert I. J. M. Van Dijk
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Figure II.1  Schematic Showing Two Possible Ways to Read Part II

Note: Chapter 7 (green): deemed essential; chapter 6 (orange): deemed optional; chapter 5 (blue): 
sketches the World Bank context. EO = Earth observation.

the WRM issues presented in  chapter 5. If nec-
essary, the sensor-variable tables in chapter 5 
and the section of chapter 6 covering the appli-
cation at hand may be of interest. Figure II.1 
summarizes these two options.

turn directly to the section of chapter 7 that is 
relevant to a specific application (or, alterna-
tively, refer to the applications presented in 
appendix B). The guiding questions should help 
them to select the most appropriate solution to 

World Bank Scope

Chapter 5 Chapter 6 Chapter 7

Science and
EO sensors Potential solutions

World Bank
application

Verify most sensible
EO sensor(s)

Choose EO application

64  |  E A R T h  O B S E R v A T I O N  f O R  W A T E R  R E S O U R C E S  M A N A G E M E N T



INTRODUCTION

This chapter provides an overview of the issue 
areas related to water resources management 
(WRM) in a given context, such as the World 
Bank, and discusses the data requirements for 
addressing them, focusing on those variables that 
can be obtained or estimated through Earth 
observation (EO). Besides the usual surface char-
acteristics, such as topography, land subsidence, 
and others mentioned in part I, Earth observa-
tion can address eight key hydrometeorological 
variables1 relevant to WRM applications: precipi-
tation; evapotranspiration; soil moisture; vegeta-
tion, land use, and land cover; groundwater; 
surface water; snow and ice; and water quality.

EO-RELATED WATER RESOURCES 
MANAGEMENT IN THE WORLD 
BANK CONTEXT

Part I assesses the activities funded by the 
World Bank to address the most challenging 
water-related issues in the developing world. 
The issues that those activities address differ 

widely and range from local problems, such as 
the provision of drinking water or sewage 
 systems in a specific town, to larger-scale 
challenges, such as the likely impacts of 
 climate change on water availability in large 
and often transboundary basins. 

The sectors, subsectors, and themes that char-
acterize water-related operations in the Bank’s 
portfolio are described in part I (see also annex 
2A available online at https://openknowledge 
.worldbank.org/handle/10986/22952). Each of 
these operations deals with particular water-
related issues, which in some cases are common 
to more than one sector or subsector. Moreover, 
the sectoral classification identifies which part of 
the economy is receiving support; it is used in 
part I as a convenient mechanism to identify the 
water-related activities in the Bank’s portfolio 
and to identify key hydrometeorological vari-
ables deemed necessary for each water resources 
activity. Part II focuses on issues, grouping sec-
tors and subsectors according to the nature of the 
issue areas or topics they address (see box 5.1, 
which was adapted from the Water Partnership 
 Program’s classification).2 

Earth Observations and 
Water Issues

CHAPTER 5

  65

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952


66  |  P A R T  I I :  E A R T h  O B S E R v A T I O N  f O R  W A T E R  R E S O U R C E S  M A N A G E M E N T

from measurements of thermal bands of the 
spectrum. 

Soil moisture can be measured by sampling: 
weighing a sample of extracted soil, drying it, 
and weighing it again. The difference in weight 
is the evaporated soil moisture. This approach 
is the most direct method of measuring soil 
moisture and has the least uncertainty, even 
though the sampling procedure and drying 
method can introduce errors. However, it is 
also very labor-intensive. Less direct methods 
of field measurement—for instance, using 
time-domain reflectometers—can increase the 
efficiency of soil moisture measurement but 
require calibration and are more prone to 
uncertainties (among other things, due to salt 
concentration and turbidity, as in this exam-
ple). Both field-based techniques only measure 
the conditions in a very small section of the 
sample or around the sensor. 

Except for the measurement of one-
dimensional flows, such as river discharge, 
one of the main challenges of ground 
 observation networks is to capture the spatial 
variability of the variable being measured. A 
rain gauge measures the rainfall over a few 
square centimeters. Usually, observations 
from a few rain gauges are used, assuming 
that they are representative of rainfall over 
the entire basin. These observations may be 
more or less accurate, depending on the 
extent of the storms, topography, and other 
factors. Current satellite precipitation prod-
ucts have resolutions usually ranging from 
0.25° with an average value of rainfall for a 
cell area of roughly 625 square kilometers to 
0.04° with an average value of rainfall for a 
cell area of roughly 16 square kilometers. The 
spatial footprints of the two types of observa-
tions (ground versus satellite) are several 
orders of magnitude different, making direct 
comparisons difficult.

Earth observations by satellite-based sen-
sors, or satellite remote sensing (RS),3 can 
overcome the problem of spatial representa-
tiveness and generally also provide continuous 

Similar to the classification of sector, subsec-
tor, and theme, each of these topics deals with 
particular water-related issues, which, in some 
cases, are relevant to more than one topic. For 
example, flood extent mapping and flood 
 prediction are of interest to urban water supply, 
environmental flows, and climate change. 

FIELD MEASUREMENT, EARTH 
OBSERVATION, AND MODELING

Field-based or in situ measurements are gener-
ally more direct than Earth observation—that 
is, they measure the biophysical variable of 
interest using a measurement principle that 
has fewer uncertainties and assumptions. The 
measurements are, however, usually represen-
tative of a smaller area than is observed by 
 satellite sensors. For example, a ground rain 
gauge takes direct measurements of the rain 
that falls on it, while satellite estimates can be 
derived indirectly from durations of cloud top 
temperatures or more direct measurements of 
rainfall between somewhere in the cloud and 
the ground surface.

Evapotranspiration can be measured directly 
using Eddy covariance methods (directly mea-
suring relative humidity in ascending air flows) 
or evaporation pans (measuring water loss to 
evapotranspiration), while remotely sensed 
estimates of evapotranspiration are inferred 

Water-Related Topics and Subtopics Considered in the 
World Bank Context

BOX 5.1

• Water supply for rural or urban water users 
•  Sanitation and hygiene
•  Agricultural water management, in irrigation or in rain-fed agriculture
•  Water resources management and environmental  services, including 

aquatic ecosystems, environmental flows, invasive aquatic plants, and 
water and climate change

•  hydropower
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Active Passive (SMAP), launched on  January 29, 
2015, start providing new, more accurate esti-
mates, these still need to be validated, and the 
reliability of new WRM applications needs to 
be assessed.4

Field measurement and Earth observation 
can complement each other to enhance and 
overcome their respective weaknesses. How-
ever, neither type of observation provides 
direct information on the future or the past 
(that is, before the observations were made). 
Digital satellite remote sensing was first used 
in the 1970s, but its use only became wide-
spread in the mid-1980s. Furthermore, neither 
form of observation provides any direct infor-
mation on how specific interventions or 
 scenarios might affect a variable of interest.

RS data or data products that blend remote 
sensing and ground observations are difficult 
to read. Responding to the need for storing 
large amounts of gridded data over vast areas 
and increasing periods of time, RS estimates 
are made available in files with binary, ASCII, 
NetCDF, or other formats. These data files 
require programming skills (codes or software) 
that are not necessarily available, much less 
widespread, in developing countries, in addi-
tion to hardware with a minimum computa-
tional power. While visualizations and 
customized applications are often developed 
to make the reading of data more user friendly, 
capacity building and perhaps additional strat-
egies are needed to facilitate access to informa-
tion contained in the data sets.

Efforts to produce data sets integrating 
ground observational networks and RS obser-
vations attempt to capitalize on the accuracy 
and precision of point measurements in the 
ground as well as the spatial representation 
provided by Earth observations. Products 
combining all available data in a region (that is, 
rain gauge networks, radar, and satellite pre-
cipitation estimates) into a gridded data set are 
the best possible representation at a specific 
spatiotemporal resolution of the true rainfall 
over the region, although they are not devoid 

measurements in time. However, they often 
rely on indirect methods to derive the value of 
the biophysical variable of interest. For the 
example of soil moisture, surface brightness 
temperature measured by passive microwave 
sensors is influenced by the soil moisture con-
ditions and can be used to estimate this impor-
tant soil property. Yet using passive microwave 
sensors has some drawbacks: the spatial reso-
lution is coarse (depending on the sensor, 
about 12–50 kilometers), only moisture in the 
very top layer of soil (1–2 centimeters) affects 
brightness temperature, and vegetation and 
surface water can confound the measurement. 
The latter also facilitates its use for observing 
vegetation biomass and surface water, respec-
tively (see chapter 6). 

Thus observations from space need to be 
analyzed, validated, and used in accordance 
with their limitations, as they can contain 
 several types or errors. Sampling and measure-
ment errors can occur due to the measurement 
of a variable in the wrong place (for example, 
rainfall at the cloud base instead of at the 
ground surface) and due to indirect estima-
tions and biases in measurement sensors, 
resulting in errors in the magnitude of the rate 
being measured. These errors will be different, 
depending on the specific geographic and 
atmospheric setting. Satellite precipitation 
products have performed differently, depend-
ing on the type of rainfall mechanisms, topog-
raphy, and geography involved. Soil moisture 
estimates are influenced by the type of vegeta-
tion and cloud cover and can contain large 
errors. Thus case-by-case validation efforts are 
essential before applying them in real-world 
situations. 

Something similar applies to the observa-
tion of other variables. False alarms and missed 
events are two other types of errors that are 
 difficult to correct without ground measure-
ments or without complementary RS observa-
tions. Even if new missions such as the Global 
Precipitation Measurement (GPM), launched 
on February 27, 2014, or the Soil Moisture 
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used to estimate conditions in times when obser-
vations were not yet available or under varying 
scenarios, although their outputs will only be as 
good as the physics and assumptions underpin-
ning them. Nevertheless, models represent our 
best conceptual understanding of physical pro-
cesses at any given time in history and provide 
insight into how components of the Earth sys-
tem interact.

With the growing wealth of water informa-
tion available from field networks, EO systems, 
and computer models, much research in recent 
years has been devoted to developing mathe-
matical techniques and computing infrastruc-
ture to bring the information together in ways 
that enhance overall accuracy and utility 
( figure 5.1). Appendix B gives numerous exam-
ples of experimental and operational systems 
that have exploited multiple data sets and infor-
mation sources to improve the monitoring of 
key water cycle variables, including merging 

of errors. Measuring and representing the 
“ground truth” accurately are still challenging. 

Given the challenges of accurately captur-
ing spatial variability, it is very difficult to pro-
duce a spatially explicit “ground truth” 
reference data set against which to compare 
satellite estimates. Ali, Lebel, and Amani 
(2005) demonstrate that errors of satellite 
products in some settings are likely to be sig-
nificantly lower when the errors in gauge 
“ground truth” data and the covariance 
between them are taken into account. An 
example of a data set integrating different 
types of data is the Global Precipitation 
 Climatology Project’s One Degree Daily. An 
exhaustive list of these types of data sets can be 
found on the website of the International Pre-
cipitation Working Group.5

These limitations can be overcome—to vary-
ing extents—with the aid of computer models. 
These models can be predictive and can also be 

On-ground observations
+ relatively direct
– sparse or infrequent
– not predictive

Satellite observations
+ full and frequent coverage
– relatively indirect
– not predictive

Biophysical models
+ predictive
+ directly interpretable
+ full and continuous coverage
– unhindered by reality

Figure 5.1  Conceptual Depiction of Information-Integration Paradigm Referred to as Model-Data Fusion

Note: + = pros; – = cons 
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much like the resolution of a photograph. 
Related terms are (satellite) footprint and pixel 
size,6 both expressed in units of distance at the 
Earth’s surface (although the two are not nec-
essarily equal). Temporal resolution refers to 
the frequency with which repeat measure-
ments are available. A related term is revisit 
time, which refers to the time period between 
subsequent satellite overpasses. This publica-
tion considers the general categories of spatial 
and temporal resolution shown in box 5.2.

The key types of variables and their mini-
mum spatial and temporal resolution require-
ments can be evaluated for each WRM issue. 
Table 5.1 identifies the main water issues that 
can be addressed with the aid of Earth obser-
vation and links them to the relevant Water 
Partnership Program topics (and subtopics, 
where applicable). For each topic and subtopic, 
the pertinent water issues were derived from 
examples given on the program’s website and 
information provided in part I of this publica-
tion.7 The results of this analysis are discussed 
below and summarized in tables 5.2 and 5.3 
(a  rearrangement of table 5.2 that focuses on 
spatial and temporal resolution). 

Some caveats are in order. First, the analysis 
undertaken sometimes makes general 

field measurements and RS estimates of 
 precipitation in gauge-sparse landscapes and 
constraining regional water balance through 
multisensor calibration of a landscape hydrol-
ogy model. A common thread is the increasing 
use of Earth observation in conjunction with 
models and field observation networks, where 
and when available, to fill the knowledge gap. 

In the absence of any field observations, 
certain analytical frameworks that exclusively 
use RS data may still provide fit-for-purpose 
information. This is especially beneficial for 
countries with limited or no field observation 
networks. For example, drought monitoring 
and water quality systems can use a range of 
biophysical, “remotely sensed only” variables 
to provide useful synoptic information for 
decision makers and policy makers. Where 
field observation networks have validated such 
information, confidence in the use of Earth 
observation has increased.

RELEVANT VARIABLES PROVIDED 
BY EO

Among all types of information potentially use-
ful for addressing WRM issues, many can be 
obtained with the aid of EO techniques. Only in 
very few cases does the satellite imagery 
(almost) measure the actual variable of inter-
est, such as surface albedo or surface  turbidity. 
More typically, the observations are  used to 
infer or estimate the variable—using some 
modeling technique, often referred to as the 
retrieval algorithm or observation model.

Table 4A.1 in annex 4A (available online) 
compares World Bank water-related activities 
with the relevant variables that can be mea-
sured in situ or estimated with the aid of Earth 
observation. In relation to Earth observation, it 
is important to consider the spatial and tempo-
ral resolution that the satellite imagery must 
have for it to be useful for informing the issue 
at hand. Spatial resolution relates to the spatial 
detail that can be distinguished in the data, 

General  Categories  of  Resolution  and  Examples  of 
Platforms Providing This Type of Data

BOX 5.2 

Spatial resolution:

•   S1: very fine, pixel size less than 10 meters (QuickBird, IKONOS)
•   S2: fine, pixel size: 10–100 meters (Landsat, ASTER)
•   S3: medium, pixel size: 100–1,000 meters (MOdIS, AvhRR)
•   S4: coarse, pixel size more than 1,000 meters (ASCAT, AMSR-E, GRACE)

Temporal resolution (revisit times): 

•   T1: near continuous, less than 3 hours (geostationary satellites)
•   T2: high frequency, 3–24 hours (polar-orbiting broad-swath satellites 

such as MOdIS, AvhRR)
•   T3: medium frequency, 1–30 days (Landsat)
•   T4: occasional, once only or ad hoc (SRTM, tasked radar)
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Table 5.3  Overview of Water Issues and Relevant Variables Provided by Earth Observation  
Rearranged to Focus on Spatial and Temporal Resolution 

ISSUE

SPATIAL TEMPORAL

MODELS1 S2 S3 S4 T1 T2 T3 T4

Identifying and monitoring water reservoirs SW SW SW SW

Monitoring and predicting water quality in 
dams and reservoirs

SW SW SW SW SW Biogeochemical 
modelsWQ WQ WQ WQ WQ

Mapping extent of flood SW SW SW SW SW

DEM DEM DEM

Predicting extent of flood P P P Hydrodynamic 
modelsSM SM SM

SW SW SW SW

DEM DEM DEM

Monitoring extent of snow and glacial cover P P P

S&I S&I S&I S&I S&I

DEM

Mapping urban and rural infrastructure V&LC V&LC V&LC

Assessing water use efficiency P P P River models

ET ET ET ET

SM SM SM

V&LC V&LC V&LC

GW GW

Monitoring rates of irrigation water use ET ET ET ET River models

V&LC V&LC V&LC

Monitoring rates of groundwater extraction ET ET ET ET River models

GW GW

Mapping irrigated areas P P P

SM SM SM

ET ET ET ET

V&LC V&LC V&LC V&LC

SW SW SW SW

DEM DEM DEM

Monitoring crop production and food 
security

P P P Crop or pasture 
growth modelsET ET ET ET

V&LC V&LC V&LC V&LC

Monitoring and forecasting drought P P P Landscape water 
balance modelsET ET ET ET

SM SM SM

V&LC V&LC V&LC

GW GW

SW SW SW SW

S&I S&I S&I S&I

(Continued)
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ISSUE

SPATIAL TEMPORAL

MODELS1 S2 S3 S4 T1 T2 T3 T4

Monitoring water quality of coastal 
discharge

WQ WQ WQ WQ WQ WQ

Monitoring maritime pollution (oil spills) WQ WQ WQ WQ WQ WQ

Identifying and monitoring groundwater-
dependent ecosystems

P P P

ET ET ET ET

V&LC V&LC V&LC

SW SW SW SW

Monitoring river flow P P P Landscape water 
balance and river 
models

ET ET ET ET

SM SM SM

GW GW

S&I S&I S&I S&I

DEM DEM DEM

Monitoring and controlling aquatic weeds V&LC V&LC V&LC V&LC

WQ WQ WQ WQ

Conducting integrated assessment of water 
availability under climate change scenarios

P P P Landscape water 
balance and river 
models

ET ET ET ET

SM SM SM

V&LC V&LC V&LC

GW GW

SW SW SW SW

S&I S&I S&I S&I

designing hydropower production facilities V&LC V&LC V&LC

DEM DEM DEM

Note: S1, S2, S3, and S4 refer to the spatial resolution of the data, while T1, T2, T3, and T4 refer to the temporal resolution. They are defined as follows: S1, very fine (pixel size, 
less than 10 meters), S2, fine (pixel size, 10–100 meters), S3, medium (pixel size, 100–1,000 meters), and S4, low (pixel size, more than 1,000 meters), T1, near continuous (revisit time, 
less than 3 hours), T2, high frequency (revisit time, 3–24 hours), T3, medium frequency (revisit time, 1–30 days), T4, occasional (revisit time, once only or ad hoc). Blue indicates 
that the data are highly valuable, green indicates that they are valuable, and white indicates that they are not relevant. dEM = digital elevation model; ET = evapotranspiration;  
GW = groundwater; P = precipitation; S&I = snow and ice; SM = soil moisture; SW = surface water; v&LC = vegetation and land cover; WQ = water quality. 

Table 5.3 (Continued)

assumptions about natural water systems, 
water  supply and use, and the infrastructure 
built to support the latter. Given the impor-
tance of issues related to water for agriculture, 
this is particularly relevant where the charac-
teristics of the information that can be derived 
in any specific application need to be compared 
very carefully with the characteristics of the 
farming systems involved. For example, farm 
dams are typically comparatively small struc-
tures (often less than 100 meters across). How-
ever, notable exceptions do exist—for instance, 

on Australia’s large-scale, flood-harvesting 
 private cotton farms, where water storage con-
tainers can measure kilometers across. 

Second, it is difficult to assess data require-
ments without considering the current state of 
EO technology and methods of analysis; that is, 
even where EO applications have only been 
conceived in a theoretical sense, such ideas are 
usually constrained by the assumed limits to the 
technology.8 This introduces a degree of circu-
larity in the analysis, particularly when consid-
ering the lowest spatial and temporal resolution 
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water issue. Chapter 6 explains each variable, 
detailing its relevance, the theoretical basis for 
its estimation with Earth observation, and the 
current and future technologies available for 
its measurement. 

The following list explains the information 
conveyed schematically in tables 5.2 and 5.3:

• Identifying and monitoring water reservoirs. 
Applications could include identifying 
water reservoirs for monitoring compli-
ance or observing water storage as part 
of a drought warning system. They may 
also be used to observe water resources 
and climate change as well as hydropower. 
Depending on the size of the reservoirs, 
high spatial resolution may be required (S1, 
S2). Generally, slow water dynamics mean 
that a moderate  frequency is likely to be 
required (T3, T4).

• Monitoring and predicting water quality 
in dams and reservoirs. In addition to the 
need to locate these water bodies (through 
remote sensing or other sources), Earth 
observation can be used at similar spatial 
resolutions and temporal revisit times (S1, 
S2, S3, T2, T3) to quantify water quality. 
This is particularly relevant for assessing 
the health risks to human and animal popu-
lations who depend on these water bodies. 
It may also be related to water resources, 
climate change, and hydropower.

• Mapping flood extent. Floods are a haz-
ard to both rural and urban populations 
because they can affect the provision of 
potable water. Flood extent can be moni-
tored with Earth observation; normally, 
high to medium spatial resolution is 
required, depending on the extent of the 
flood and the physical characteristics of 
the terrain. In large floodplains, medium 
resolution (S3) may suffice, but high reso-
lution (S2) may be required in many other 
cases. Normally, high-frequency imagery 
(T2) is desired, but opportunistic acquisi-
tion of medium-frequency imagery (T3) 

that might still be useful. For example, if satel-
lite observation of soil moisture or water level 
were possible at a scale of meters and minutes,  
it is likely that entirely new applications would  
be conceived and developed and that data 
 requirements would be modified accordingly.

Tables 5.2 and 5.3 cross-reference the issues 
addressed under the topic areas with relevant 
variables that can be measured or estimated 
with the aid of Earth observation. The two 
tables present the same information, but 
arranged in different ways to facilitate inter-
pretation. For each issue, the relevant variables 
that can be obtained from Earth observation 
are listed. Each variable is classified according 
to its usefulness: green when considered “valu-
able,” meaning that it is likely to be useful in 
addressing the issue at hand, blue when con-
sidered “highly valuable,” meaning that using 
EO may significantly improve the ability to 
address the issue, and white when deemed not 
relevant. In addition, the most appropriate 
spatial and temporal resolutions are listed. 

As an example, consider the efficiency of 
water use in crops, an important issue for agri-
cultural water management. Earth observation 
can provide information on evapotranspira-
tion9 to estimate water use by crops and can 
also identify the location of the irrigated 
crops—both types of data may well be essential. 
These data can be obtained at fine and medium 
spatial resolution and with high and medium 
frequency (temporal resolution); the prefera-
ble combination will depend on the nature of 
the application. Furthermore, Earth observa-
tion can be used to estimate rainfall, which is 
particularly useful where the field rainfall mea-
surement network is inadequate. Precipitation 
data from Earth observation are only available 
at coarse spatial resolution, but with high or 
even near-continuous frequency. Finally, Earth 
observation can provide potentially relevant 
information on the amount of moisture in the 
top layer of soil and on the volume of ground-
water, but again, only at coarse resolution.

Table 5.3 may be used as a guide for deter-
mining the data needs and availability for each 
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used by the crop. Efficient agricultural man-
agement ensures the sustainable use of 
water. The key variable to monitor is evapo-
transpiration, which can be done at high 
and medium spatial resolutions (S2, S3) and 
also at high- and medium-frequency revisit 
times (T2, T3), depending on the applica-
tion. Other useful variables are land cover, at 
the same spatial resolution and at least once 
during the growing cycle (T3), and precipi-
tation and soil moisture, typically at coarse 
spatial resolution (S4), but perhaps daily or 
more frequently (T1, T2). 

• Monitoring rates of irrigation water use. 
Similar to assessing water use efficiency, 
monitoring irrigation water use requires 
estimating crop ET rates. Information on 
the location and size (land cover mapping) 
of irrigated crops is useful. It is also impor-
tant in relation to water resources and 
 climate change.

• Monitoring rates of groundwater extraction. 
Water volumes extracted from groundwa-
ter cannot be estimated directly with Earth 
observation. Gravimetric measurements 
can provide coarse resolution (S4) esti-
mates of groundwater, which can inform 
basin-wide changes in groundwater  levels. 
In local studies, a combination of river 
models and satellite ET estimates may 
help to constrain groundwater extraction 
estimates, which are also of importance for 
urban water supply.

• Mapping irrigated areas. The location of 
crops can be determined by using land 
cover classification techniques at high or 
medium spatial resolution (S2, S3) and 
revisit times (T2, T3). Whether specific 
crops have been irrigated cannot be estab-
lished directly with Earth observation, 
unless water remains in the surface for long 
periods, as is the case of paddy rice. How-
ever, it may be determined with ancillary 
information, such as the connectedness to 
surface water reservoirs or rivers, or with 

can also be useful. Digital elevation models 
(DEMs) can help to identify flooded areas. 

• Predicting flood extent. Besides mapping 
flood extent when flooding occurs, pre-
dicting flood extent is highly relevant to 
urban water supply and, of course, to disas-
ter management. DEMs are critical in this 
context; in addition to weather forecasts, 
antecedent rainfall and soil moisture con-
ditions can be very useful. Flood extent 
can be predicted by considering previously 
flooded areas and estimating the associ-
ated recurrence times. It may be combined 
with hydrodynamic models to simulate 
water flows and flood extent during high-
rainfall events upstream. 

• Monitoring extent of snow and glacial cover. 
Many regions of the world obtain part 
of their water supply from melting snow 
and ice. This is the case in high-latitude 
regions, in mountainous regions, and in 
valleys at the foothills of high mountains. 
Measuring the area and water equivalent 
of snow and ice can help to estimate the 
 volume of water runoff to be expected dur-
ing spring and summer. Snow and ice can 
be measured with Earth observation at 
high, medium, and coarse spatial resolu-
tion (S2,  S3, S4); high as well as medium 
frequency (T2, T3) are required and 
 possible. In addition to the direct mapping 
of snow and ice areas, Earth observation of 
precipitation can improve water equiva-
lent estimates, and DEMs can also indicate 
where snow is likely to fall and persist. 

• Mapping urban and rural infrastructure. 
Applications include the identification of 
existing facilities and land cover mapping 
before construction. Generally, very high 
or high spatial resolution imagery (S1, S2) 
is needed, either from satellites or from 
airborne imagery on occasion (T4). 

• Assessing water use efficiency in irrigated 
crops. Water use efficiency is the ratio of 
agricultural produce to the amount of water 
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monitored with Earth observation using 
methods similar to those described under 
the previous item. 

• Identifying and monitoring groundwater-
dependent ecosystems. Groundwater-
dependent ecosystems require access to 
groundwater to meet some or all of their 
water requirements. Their survival can be 
threatened by consumptive use of water for 
agriculture, mining, and other purposes. 
These systems typically need to be identi-
fied at high or medium spatial resolution 
(S2, S3) and can be supported by EO-based 
land cover mapping and estimates of water 
balance deficit. Mapping of open water can 
help to distinguish ecosystems dependent 
on groundwater from those dependent on 
surface water inflows. 

• Monitoring river streamflow. River stream-
flow can be monitored directly with Earth 
observation using radar altimetry, but 
 currently only for comparatively broad 
 rivers and at a limited number of locations. 
Flows can also be modeled with landscape 
and river models, which can be informed 
(forced or calibrated) with EO estimates 
of precipitation, soil moisture, evapo-
transpiration, snow and ice extent (where 
 relevant), and groundwater. 

• Monitoring and controlling aquatic weeds. 
Aquatic weeds can be a challenging prob-
lem affecting navigation, water supply, 
and habitats. They may be detected and 
mapped with land cover classification 
techniques and tend to be related to water 
quality. This kind of monitoring is nor-
mally done, and necessarily so, at very high 
or high spatial resolution (S1, S2). 

• Conducting integrated assessment of water 
availability under climate change scenarios. 
Proper characterization and understand-
ing of the water balance and its drivers 
in the past and present are necessary to 
predict the availability of water over large 

information regarding the estimated water 
balance deficit (that is, the difference 
between precipitation and evapotranspira-
tion) during the growing season, which can 
be obtained with Earth observation. 

• Monitoring crop production and food 
 security. Earth observation can be used to 
estimate crop production via vegetation 
indexes, normally at high and medium spa-
tial (S2, S3) and temporal (T2, T3) resolu-
tions. Remotely sensed precipitation and 
evapotranspiration can be useful too. Crop 
growth models or pasture growth models 
(in the case of livestock production) can 
also be useful and may be parameterized 
with EO data. 

• Monitoring and forecasting drought. 
Drought monitoring typically uses vegeta-
tion index10 anomalies and precipitation 
data. However, remotely sensed total water 
storage, surface soil moisture, and rainfall 
are increasingly being incorporated into 
drought monitoring systems. Forecasting 
drought requires landscape water balance 
models that can be forced (up to the fore-
cast date) or calibrated with additional EO 
information on rainfall, evapotranspira-
tion, soil moisture, groundwater, and snow 
and ice, where relevant. 

• Monitoring water quality of coastal dis-
charge. Water quality in rivers can affect 
marine ecosystems by discharging exces-
sive levels of sediments and nutrients. 
These discharges can be monitored with 
Earth observation either in rivers or estu-
aries themselves or in coastal waters. 
The effects of the discharge, such as algal 
blooms, can also be detected. While inland 
water bodies may require high or very high 
spatial resolution (S1, S2), coastal environ-
ments typically require medium spatial 
(S3) and high temporal (T2) resolution. 

• Monitoring maritime pollution ( for exam-
ple, oil spills). Coastal pollution can be 
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 4. For the GPM, see http://www.nasa.gov/mission_
pages/GPM/launch/. For the SMAP, see https://
smap.jpl.nasa.gov/.

 5. For information on these types of data sets, see 
http://www.isac.cnr.it/~ipwg/data/datasets1.html.

 6. Spatial resolution is defined as the size of the 
smallest individual component or dot (called 
a pixel) from which the image is constituted. 
For instance, if a satellite’s resolution is stated 
as “5 meters,” each pixel in the imagery has a 
size of 5 meters by 5 meters. The footprint is the 
area of the Earth covered by the microwave radia-
tion from a satellite dish (transponder). The size 
of the footprint depends on the location of the 
satellite in its orbit, the shape and size of the beam 
produced by its transponder, and the distance 
from the Earth.

 7. Therefore, this list is not exhaustive. For example, 
monitoring water reservoirs and water quality 
in dams and reservoirs may also relate to water 
resources and climate change and to hydropower, 
monitoring rates of irrigation water use may also 
relate to water resources and climate change, 
monitoring groundwater extraction may also 
relate to urban water supply, and so on.

 8. Henry Ford supposedly said about his cars, “If I 
had asked people what they wanted, they would 
have said faster horses.”

 9. Evapotranspiration is the process by which water 
is transferred from the land to the atmosphere by 
evaporation from the soil and other surfaces and 
by transpiration from plants.

 10. A vegetation index describes the greenness—the 
relative density and health of vegetation—for each 
pixel in a satellite image.

REFERENCE

Ali, A., T. Lebel, and A. Amani. 2005. “Rainfall Estima-
tion in the Sahel. Part I: Error Function.” Journal 
of Applied Meteorology 44 (11): 1691–706.

regions under climate change scenarios. 
Almost all of the variables mentioned here 
can be useful. Landscape and river mod-
els are important for integrating the vari-
ous observations and creating scenarios of 
future conditions. 

• Designing hydropower production facilities. 
Designing hydropower facilities requires 
the availability of accurate DEMs, which 
can be obtained from airborne or satellite 
imagery. It may also benefit from mapping 
of land cover, including existing buildings 
and vegetation types, at very high or high 
resolution (S1, S2).

NOTES

 1. As in part I, for simplicity’s sake, other types of 
data relevant to hydrologic applications—such as 
land cover, land subsidence, and topography—are 
also referred to as hydrometeorological variables. 

 2. The Water Partnership Program sometimes 
changes its classification slightly (see http://water 
.worldbank.org/wpp). As of February 15, 2015, 
the subtopics are water supply, sanitation, 
 irrigation and drainage, hydropower, and water 
resources management. The program’s “thematic 
 highlights” are water resources management, 
 climate change, food security, energy  security, 
water for environment, water supply and 
 sanitation, integrated urban water management, 
remote sensing, and disaster risk management. 
For practical purposes, part II uses the categories 
listed as topics, combined with the program’s 
action areas. 

 3. Although some define Earth observation as con-
sisting of remote sensing and in situ measure-
ments, this publication uses the terms Earth 
observation and remote sensing interchangeably.

http://www.nasa.gov/mission_pages/GPM/launch/
http://www.nasa.gov/mission_pages/GPM/launch/
https://smap.jpl.nasa.gov/
https://smap.jpl.nasa.gov/
http://www.isac.cnr.it/~ipwg/data/datasets1.html
http://water.worldbank.org/wpp
http://water.worldbank.org/wpp


INTRODUCTION

This chapter provides an overview of the main 
variables that can be derived from satellite 
Earth observation (EO) and are relevant to the 
water issues presented in chapter 5. Most EO 
instruments obtain an image of radiation inten-
sity in specific portions of the electromagnetic 
spectrum (EMS). The radiation is reflected 
from the sun by the Earth’s surface, called opti-
cal remote sensing (RS); emitted by the Earth’s 
surface itself, called passive remote sensing; or 
first emitted by the instrument and then 
reflected from the surface, called active remote 
sensing, such as radar. Exceptions to EMS 
imagers are satellite altimeters and the Gravity 
Recovery and Climate Experiment (GRACE) 
gravimetry mission, whose primary measure-
ments are distance to the Earth’s surface and 
between the two satellites, respectively. 

CHARACTERISTICS OF SENSORS

Fundamental to the design of any EMS sensor 
are its characteristics in the spectral, radiometric, 

and temporal domains. EMS sensors are defined 
by the extent, resolution, and density in each of 
those domains (table 6.1) plus the spatial domain 
(Emelyanova et al. 2012). 

This data framework provides a means to 
assess the likely utility of different types of RS 
data to estimate key biophysical variables in 
particular applications. Because of the limits 
on measurement and telecommunication tech-
nology, there is typically a trade-off between 
the performance that a sensor can achieve in 
each of these dimensions. For example, imag-
ery obtained by the Moderate Resolution 
Imaging Spectroradiometer (MODIS) sensors 
has a temporal, spectral, and radiometric reso-
lution that is about an order of magnitude 
higher than that obtained by Landsat, but its 
spatial resolution is an order of magnitude 
lower (figure 6.1, panel a).

This framework only considers observa-
tional characteristics, although important oper-
ational considerations often also exist, such as 
the following: 

• Data availability and the cost of purchase, 
if any
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Source: Emelyanova et al. n.d. © Commonwealth Scientific and Industrial Research Organisation (CSIRO). Used with permission. Further permission 
required for reuse.

Note: Panel a shows temporal density and spatial resolution. Panel b shows spectral extent, resolution, and density (darker colors represent the 
MODIS bands, while the lighter colors represent the Landsat TM bands). Panel c shows radiometric extent, resolution, and density for the TM and 
MODIS infrared bands. MODIS = Moderate Resolution Imaging Spectroradiometer; TM = thematic mapper.

Table 6.1 Data Framework Comprising Domain-Characteristic Elements

DOMAIN EXTENT RESOLUTION DENSITY

Spectral Portion(s) of the EMS being sampled Bandwidth(s)a Number of bands in a particular 
portion of the EMSb

Radiometric Dynamic range of radiances 
(minimum and maximum radiance per 
band)

Change in radiance due to change by 
one digital number

Number of bits used across the 
dynamic range of radiances

Temporal Recording period over which the 
data are availablec

Period of data acquisitiond Satellite repeat characteristicse

Source: Modified from McVicar and Jupp 2002.

Note: EMS = electromagnetic spectrum. 

	 a. The narrower the bandwidth, the higher the spectral resolution. 

 b.  For example, hyperspectral sensors (Hyperion) have higher spectral density than broadband instruments (Landsat TM/ETM+), although they sample similar EMS ranges.

 c. For some remotely sensed systems (AVHRR and Landsat TM), data have been recorded near-continuously for about 30 years. 

 d. For remotely sensed images, this is a matter of seconds, which contrasts with meteorological data such as the daily rainfall totals. 

 e.  For some applications using optical (that is, reflective and thermal) data, the availability of cloud-free images is an important consideration. Whereas the satellite’s 
repeat characteristics do not change, cloud cover will change the effective temporal density of a site over time.

Figure 6.1  Characteristics of MODIS and Landsat TM Data Domain
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surface in liquid form (rain), solid form (snow 
or hail), or a combined form (sleet). The ability 
to quantify precipitation distributions in space 
and time is critical to establishing infrastruc-
ture to capture and store water resources for an 
ever-growing population. Due to its fine-scale 
spatial and temporal variability, monitoring 
large-area precipitation challenges field-based 
measurement networks. A rain gauge can pro-
vide an accurate estimate of precipitation at a 
point in the landscape, but there is uncertainty 
about whether this estimate is representative 
of rainfall at some distance away from the 
gauge location. This problem is especially pro-
nounced for particular rainfall regimes, such as 
convective storms (figure 6.2). Space-based 
methods of estimating precipitation offer ways 
to fill the information “gap” either by merging 
with existing surface measurement networks—
to constrain estimation between gauges—or by 
providing direct estimates when and where no 
other information is available.

Estimating Space-Based Precipitation 
Satellite-based estimation of precipitation 
began in the 1970s with the advent of weather 
satellites. Multichannel radiometers aboard 
geostationary satellite platforms provide visi-
ble infrared (VIS) and thermal infrared (TIR) 
imagery of the Earth’s surface at medium (S3), 
about 1-kilometer, spatial resolution and very 
high (T1) temporal resolution. These satellite 
data were used to generate the first set of pre-
cipitation estimates for large areas of the globe, 

• Data latency (the time that passes between 
the actual observation and the moment the 
data are made available)

• Reliability (any guarantees with regard to 
future availability and latency, stability of 
the data characteristics, and the like)

• Data format (size of the data files, requirements 
for specialized skills, software, or hardware) 

• Degree of validation and acceptance 
(whether stakeholders will accept the data 
being used or the quality of the data com-
pared with data from alternative sources)

• Interpretability and uncertainty (how 
unambiguous is the interpretation of the 
data in the context of a specific application)

This list is not meant to be exhaustive.

TYPES OF DATA OBTAINED FROM 
EARTH OBSERVATION

This publication has adopted the definitions 
given in table 6.2. The remainder of this chapter 
explains how the main data products relevant to 
water resources monitoring are obtained from 
raw or processed data. Appendix B provides a 
list of notable examples of information products.

Precipitation 
Definition
Precipitation is the process by which water 
returns from the atmosphere to the Earth’s 

Table 6.2 Types of Data Obtained from Earth Observation 

DATA TYPE DESCRIPTION

Raw data Sensor measurements as received directly from the satellite, formatted as “digital counts”

Processed data Top	of	atmosphere	(TOA)	signal. Raw data processed to TOA data: conversion to real-world units, such as 
radiance (watt per steradian per square meter per nanometer [W·sr−1·m−2·nm−1]) or reflectance (%); signal 
calibration

Surface	signal. TOA data processed to surface-equivalent data: corrections applied to remove atmospheric and 
solar-sensor viewing-angle effects; scene stitching; geolocation and reprojection

Data products Conversion of processed data into products that describe real-world (usually biophysical) variables such as 
chlorophyll concentration, leaf area, rainfall rate, surface temperature, and soil moisture mass

Information products Conversion of data products into management-relevant information for decision support, for example, eutrophication 
state of Cobalt Lake, flood risk of the Emerald River delta, and sustainable irrigation rates in the Crimson basin

Note: TOA = top of atmosphere.
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these data are generally considered superior 
to those obtained from TIR observations.

Both microwave and thermal approaches to 
estimating satellite-based precipitation have 
strengths and weaknesses. For example, TIR- 
based estimates from geostationary satellites 
have full-disk (global) coverage at near con-
tinuous (T1) temporal resolution of one-six to 
1 hour and a coarse to medium spatial resolu-
tion of less than 5 kilometers (S3 or S4), but 
result in poor precipitation estimates at the 
high resolution. Conversely, passive micro-
wave estimates from polar-orbiting satellites 
are more accurate but cover less of the globe, 
have coarser spatial resolution of about 10–100 
kilometers (S4), and have less frequent repeat 
coverage (T4) for any given sensor. 

The mid-1990s ushered in a new era of deriv-
ing multisatellite precipitation estimates, as algo-
rithms were developed that exploited the high 
spatial and temporal coverage of the geostation-
ary TIR estimates with the more accurate passive 
microwave-based estimates, making the best of 

based on a relationship between cloud top 
temperatures and precipitation rate (roughly, 
the lower the temperatures, the higher the rate 
of precipitation). However, Arkin and Meisner 
(1987) show that TIR-based estimates of pre-
cipitation are relatively poor, as the relation-
ship between the cloud top temperature and 
precipitation rate break down for resolutions 
in time shorter than one day and resolutions in 
space lower than 2.5° in latitude and longitude.

The next advance in satellite-based estima-
tion of precipitation occurred in the 1980s 
with the deployment of passive microwave 
sensors aboard polar-orbiting satellites. In 
contrast to the weak relationship underpin-
ning TIR-based precipitation, the scattering 
and emission of passive microwave radiation 
by ice particles or rain droplets in clouds is 
better understood and modeled (Kummerow 
et al. 2001). Satellite-based, passive microwave 
brightness temperatures between 10–200 
gigahertz have stronger relationships with 
precipitation, and the retrievals derived from 

a. Rainfall off the coast of Madagascar b. Rainfall over southeastern United States

Source: NASA (http://pmm.nasa.gov/mission-updates/trmm-news/trmm-sees-severe-weather).

Note: (a) Large convective rainfall storm off the northwest coast of Madagascar as detected by Tropical Rainfall Measuring Mission (TRMM) Satellite’s precipitation radar on April 3, 
2014, at 01:43 UTC (Coordinated Universal Time); (b) a frontal rainfall system developing into a line of intense storms over southeast United States at 13:00 UTC on April 7, 2013.

Figure 6.2  Space-Based Precipitation Measurements from TRMM Satellite

http://pmm.nasa.gov/mission-updates/trmm-news/trmm-sees-severe-weather
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both approaches (Huffman et al. 1997; Joyce et al. 
2004; Kubota et al. 2007; Sorooshian et al. 2000). 

Table 6.3 summarizes the characteristics of 
some of the more commonly used satellite pre-
cipitation products (SPPs). A common feature 
of these products is that they all use both 
microwave and thermal EO data to generate 
precipitation estimates. 

The launch of the Tropical Rainfall Measur-
ing Mission (TRMM) satellite in 1997 placed 
the world’s first precipitation radar in orbit. 
Precipitation radar provides detailed informa-
tion on the vertical structure (250-meter reso-
lution) of rainfall and offers the most accurate 
precipitation estimates from space (Kum-
merow et  al. 2001). At a satellite orbit of 
350 kilometers in altitude, swath width of 215 
kilometers, and orbital inclination limiting its 
coverage to ±35° latitude, the data provided by 
precipitation radar are far from global. How-
ever, the quality of the precipitation estimates 
makes precipitation radar a valuable source of 
information for calibrating both passive micro-
wave and TIR instrumentation across multiple 
satellite platforms, thus extending the potential 
coverage of precipitation estimation. This is the 
basis for the TRMM Multisatellite Precipita-
tion Analysis (TMPA) system, which generates 
quasi-global precipitation estimates going back 
as far as January 1, 1998 (Huffman et al. 2007). 

The TMPA system sets the standard for the 
operational production of global satellite-
derived precipitation estimates. While peer sys-
tems (that is, rainfall analysis systems based 
primarily on satellite observations) may have 
higher resolution in space and time than some of 
the TMPA products (table 6.3), agencies 
throughout the world have used TMPA’s (quasi-) 
operational status to feed into their rainfall anal-
ysis systems (Mitra et  al. 2009; Rozante et  al. 
2010) and to inform current and planned global 
flood and drought monitoring systems (Pozzi 
et al. 2013; Wu et al. 2012). The suite of precipita-
tion products from the TMPA system (including 
precipitation radar only, microwave only, and 
merged microwave-TIR products) is available in 

real time and in post–real time (known as 
research grade products). In 2012, the system 
underwent a major transition from v6 (version 
6) to v7 in which all products from the start of 
production in December 1997 were reprocessed. 
Studies have demonstrated the superiority of 
TMPA v7 to its predecessor (Chen et al. 2013). 

On February 27, 2014, an H-IIA rocket 
from the Japan Aerospace Exploration 
Agency (JAXA) launched into orbit the first 
satellite of the core observatory of the Global 
Precipitation Measurement (GPM) mission, 
building on and continuing the long history of 
space-based estimation of precipitation. GPM 
will provide a multisatellite view of global 
precipitation at unparalleled spatial and tem-
poral coverage. Many of the techniques for 
estimating precipitation from space and for 
blending results from multiple satellite sen-
sors have been honed over decades—from the 
early, cloud top temperature methods of geo-
stationary thermal Earth observation to the 
recent constellation of polar-orbiting micro-
wave imagers of the TMPA system. The GPM 
mission continues this legacy of space-based 
monitoring of precipitation (Hou et al. 2013). 

The core observatory of the GPM mission 
has a design life of three years, with battery life 
of at least five years and extended mission life 
until 2021 (Hou et al. 2013). Global precipitation 
products will be generated at three-hourly 
intervals, with a latency of three to four hours 
every day, by combining data from a “constella-
tion” of current and planned microwave sensors 
through the Integrated Multisatellite Retrievals 
for GPM (IMERG) system (Huffman et al. 2013). 

Satellite-Derived Precipitation Products
Table 6.3 lists the characteristics of some of the 
better-known global precipitation products that 
are derived from multiple satellite sensors. The 
International Precipitation Working Group 
provides a more comprehensive list of SPPs, 
including single-source products, model reanal-
yses (weather model–derived precipitation 
products), and gauge-only gridded estimates.1 
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makes them less desirable or credible to some 
potential users than the direct measurements 
made by rain gauges.

Precipitation estimates from microwave-
based satellite observations are known to 
underestimate light rainfall rates, typical of 
precipitation resulting from orographic lift2 
and cold fronts, for example. This is due to the 
reduced contrast in brightness temperatures 
from the land surface and scattering layer for 
low clouds. This can be a further impediment 
to the adoption of SPPs, particularly in moun-
tainous areas of the Earth’s surface. 

Geostationary SPPs are based on cloud top 
temperatures. The underlying assumption 
here is that a weak relationship exists between 
the observed temperature of clouds and rain 
rate, the idea being that lower temperatures 
indicate clouds extending higher up into the 
atmosphere than their surroundings. While 
this relationship may hold for strongly con-
vective systems, with cumulonimbus clouds 
extending into the stratosphere, the relation-
ship is less solid for rain-producing clouds 
(for example, stratiform) in the lower to mid-
dle parts of the troposphere. Furthermore, the 
well-known misregistration between the 
location of the cloud top and the rain front 
further compounds the lack of reliability of 
geostationary-based rainfall estimation.

Observation frequency is another issue with 
SPPs, especially for the detection of extreme 
rainfall events (for example, AghaKouchak 
et al. 2011). Most modern SPPs are derived pri-
marily through passive microwave sensors 
aboard polar-orbiting satellites, each with a 
repeat frequency of typically more than one 
day. Satellite constellations mitigate the issue 
somewhat by potentially providing many snap-
shots of an area from multiple polar-orbiting 
platforms. For example, the TMPA product 
3B42RT (table 6.3) uses data from any available 
passive microwave sensor within a 90-minute 
window on either side of the synoptic 
time  (which is at three-hour intervals over a 
day). However, given the typically short 

However, the verification statistics are reported 
at an aggregate scale (for example, national 
average), while performance of these products 
is spatially variable at the local scale. For exam-
ple, regions with orographic rainfall pose a 
challenge to satellite retrieval of rainfall (due to 
the light intensity of orographic rainfall), and 
rainfall in those regions is typically underesti-
mated or missed in the satellite products.

Known Issues 
Satellite-derived precipitation estimates have 
the potential to improve spatially distributed 
hydrologic model estimation and prediction 
(Gebremichael and Hossain 2010; Pan, Li, and 
Wood 2010). Unlike the isolated point mea-
surements provided by rain gauges, satellite-
based precipitation estimates offer greater 
spatial coverage of rainfall estimation with 
higher temporal frequency than many of the 
current gauging networks. Radar rainfall 
offers high-resolution (about 1 kilometer), 
high-frequency (about 10 minutes) precipita-
tion estimates for areas within about a 150- to 
300-kilometer radius of the radar location. 
However, the estimates are known to be 
affected by beam blockage and greater uncer-
tainty moving away from the radar. For these 
reasons, as Gourley et  al. (2010) and other 
studies have shown, they can give poorer esti-
mates compared with some SPPs. Neverthe-
less, where radar data are available and well 
calibrated, radar rainfall can be useful for 
small-scale hydrologic prediction. However, 
much of the global land area is “unobserved” 
by ground-based rainfall radar systems,  
which limits their use in large-area (espe-
cially  continental or global scale) water 
resources  assessment. 

The coarse spatial resolution of many of the 
SPPs currently available is considered one of the 
impediments to their widespread adoption by 
the hydrologic modeling community and water 
resources managers. Moreover, the fact that the 
precipitation products are retrievals derived 
from brightness temperature observations 
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By exploiting the accuracy of station-level 
rain gauge measurements and the spatial cov-
erage of gridded rainfall products, the blending 
of these two sources of information mitigates 
the shortcomings of the respective data sets to 
produce improved precipitation estimates. 
The statistical blending of satellite-derived 
precipitation products and rain gauge mea-
surements has only been explored relatively 
recently to generate high-resolution rainfall 
estimates at continental scales (Chappell et al. 
2013; Mitra et  al. 2009; Renzullo et  al. 2011; 
Rozante et al. 2010; Vila et al. 2009; Xiong et al. 
2008). When further combined with reanaly-
ses, the results are often a great deal improved 
(Sheffield, Goteti, and Wood 2006).

Renzullo et  al. (2011) explore the role of 
satellite precipitation to enhance gauge-based 
analysis in Australia (figure 6.3). They exam-
ine several statistical methods for blending a 
TMPA near-real-time product (3B42RT) with 
gauge measurements from approximately 
2,000 stations distributed across Australia 
reporting daily (that is, 24-hour accumulated) 
rainfall in real time. The blending of satellite 
estimates with gauge data resulted in a clear 
improvement over the use of satellite data 
alone, and the satellite data imparted more 
realistic patterns of rainfall distribution in the 
blended product than in “smoother,” gauge-
only analyses. However, the quantitative eval-
uation of the blended satellite-gauge rainfall 
product using the independent set of post-
real-time rain gauge observation revealed 
that the estimates were no better than the 
gauge-only analyses. Subsequent investiga-
tion (reported in the supplementary material 
of Chappell et al. 2013) shows that the result 
was due largely to the fact that the evaluation 
occurred predominantly in well-gauged parts 
of the continent, where the gauge analysis has 
lower error. The satellite-derived product 
was only likely to improve estimation for 
parts of the country with fewer than four 
gauges per 10,000 square kilometers (equiva-
lent to a 1° x 1° cell; figure 6.4). 

duration and very localized nature of extreme 
convective rainfall events, the event could pass 
undetected or be underrepresented in the 
derived products.

Studies evaluating SPPs and precipitation 
forecast from numerical weather prediction 
models have shown that SPPs do compara-
tively well at detecting “summer” rainfall, 
characterized by convective weather sys-
tems, whereas weather model forecasts are 
better for “winter” rain, which is largely 
stratiform (Ebert, Janowiak, and Kidd 2007; 
Sapiano et al. 2010). The complementarity of 
the satellite- and model-derived precipita-
tion has spurred some researchers to con-
sider combining the two sources of 
information, for example, as a simple ensem-
ble mean of the data sets (Peña-Arancibia 
et al. 2013) or through more statistics-based 
merging approaches (Sapiano, Smith, and 
Arkin 2008). For instance, the Asia-Pacific 
Water Monitor of the Commonwealth Scien-
tific and Industrial Research Organisation 
(CSIRO) uses a blending method that empha-
sizes precipitation estimates from the 
TRMM satellite product for areas closer to 
the equator and weather model precipitation 
estimates from the European Centre for 
Medium-Range Weather Forecasts for areas 
toward the poles.3

Blended Satellite- and Gauge-Based 
Precipitation Analyses
Rain gauge measurements are typically not 
used to retrieve rainfall data from satellite-
based platforms (either geostationary or polar 
orbiting) or to conduct numerical weather pre-
diction (reanalysis), except by some products 
to correct retrospective bias in the rainfall esti-
mates. Blending multiple precipitation data 
sets has been the practice for many years 
among researchers in rainfall radar (for exam-
ple, gauge-corrected reflectivity; Krajewski 
1987) and satellite-derived precipitation (for 
example, merged passive microwave and TIR 
imagery; Huffman et al. 1997). 
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Source: CSIRO 2011. © CSIRO. Used with permission. Further permission required for reuse.

Note: Panel a is from a National Aeronautics and Space Administration multisatellite rainfall product. Panel b is from analysis of rain gauges. Panel c 
is from combining the gauge and satellite rainfall estimates. The rain front shown led to widespread flooding in southern Queensland and northern 
New South Wales.

(a)

(b) (c)

Sources: Renzullo et al. 2011 (panels a and b); Global Precipitation Climatological Center (http://gpcc.dwd.de) (panel c). © Water Information 
Research and Development Alliance (WIRADA) (panels a and b). Used with permission. Further permission required for reuse. Note: Panel a shows 
the location of the approximately 2,000 rain gauges reporting 24-hour accumulated rainfall in real time (the distribution is typical for any given day 
of the year). Panel b depicts the number of days in a year where the density of rain gauges is less than four gauges per 1° x 1° (satellite-derived 
precipitation is likely to improve rainfall estimates in the white regions). Panel c shows the number of gauges per 1° x 1° grid cell from the Global 
Precipitation Climatological Center.

The factors affecting when and where sat-
ellite data are expected to produce better 
rainfall estimation include type of topography 
and rainfall in addition to gauge density. How-
ever, in large parts of the globe, rain gauge 
networks are sparse (figure 6.4, panel c) and 
there is growing evidence to suggest that sat-
ellite-derived precipitation, together with 
weather model reanalysis estimates, can pro-
vide highly valuable rainfall estimates and 
narrow the information gap. 

SPPs can enhance global precipitation esti-
mation when the data are used in conjunction 

with multiple sources of precipitation data (for 
example, gauge, radar, and forecasts). Shef-
field, Goteti, and Wood (2006) use global, 
1°  x  1° daily precipitation data, derived from 
the Global Precipitation Climatology Project’s 
Special Sensor Microwave Imager (SSM/I) 
and gauge observations, to correct modeled 
daily rainfall reanalysis from the National Cen-
ter for Environmental Prediction and the 
National Center for Atmospheric Research.4 
Furthermore, they use the three-hourly TMPA 
3B42RT rain rates to disaggregate the daily 
data temporally into three-hourly rainfall 

a. Multisatellite b. Rain gauge c. Blended

Rainfall (mm)

0 10 20 30 40 50+

Figure 6.3  Daily Rainfall Estimates for March 1, 2010, in Australia

Figure 6.4  Distribution of Real-Time Rain Gauges and Areas Where Satellite-Derived Precipitation  
Is Likely to Improve Accuracy of Rainfall Estimation in Australia

http://gpcc.dwd.de


88 | P A R T  I I :  E A R T H  O B S E R V A T I O N  F O R  W A T E R  R E S O U R C E S  M A N A G E M E N T

is energy limited. In the second stage, water is 
limiting, and as the soil dries and plants close 
their stomata, actual ET declines. The water-
limited part of the actual ET process is com-
plex, depending on both biology (where there 
is vegetation) and meteorology. However, when 
water is not limiting, energy-limited actual ET 
is determined primarily by four principal mete-
orological drivers: net radiation, air tempera-
ture, relative humidity, and wind (McVicar 
et  al., “Global Review and Synthesis,” 2012a; 
McVicar et al., “Less Bluster Ahead?” 2012b). 

Relevance
Actual evapotranspiration connects many of 
the Earth’s hydrologic and related environ-
mental processes at local, regional, and 
global scales. For example, actual ET links 
the water balance to the energy balance, veg-
etation to hydrology, and hydrology to cli-
mate. Actual evapotranspiration is both a 
matter of environmental physics and biology, 
as it is governed by the conditions of the 
physical environment at the surface and in 
the atmosphere, but also by photosynthesiz-
ing vegetation, which transpires water to 
assimilate carbon (described later in this 
section). Through vegetation, actual evapo-
transpiration is the primary hydrologic 
“lever” by which man can either inadver-
tently alter or actively manage the water 
cycle. As such, it is relevant to water manage-
ment in agriculture, environmental services, 
climate change, and hydropower (see tables 
5.2 and 5.3). For models of actual ET to be 
relevant to water management, they ideally 
should have the following characteristics: 

• Have coverage that is suited to the purpose

• Be spatially and temporally dynamic at 
moderate to high resolution 

• Accurately close the energy and mass bal-
ance (as a means of quality control). 

For the first two characteristics, optical EO 
data are often used for spatial modeling of 

estimates globally. The result is a precipitation 
data set with improved accuracy compared 
with model prediction and, in some instances, 
satellite products alone.

Evapotranspiration 
Definition
Evaporation is the phase change from a liquid to 
gas. Evapotranspiration (ET) may occur from 
the Earth’s surface (the soil, a water body, or 
other type of surface), through plant leaves 
(termed transpiration), and from rainfall on the 
surface of leaves (termed interception). While the 
term evapotranspiration covers these three com-
ponents, interception is not explicitly used in the 
compound word. Evaporation, like precipitation, 
has the dimensions of depth per time, and com-
mon units are millimeters per hour, per day, or 
per year. When spatially integrated over an area 
such as a paddock, catchment, basin, or country, 
the dimensions become volume per time, and 
common units are cubic meters per day.

Actual evapotranspiration is difficult to mea-
sure at a single location (Leuning et al. 2012), let 
alone to estimate accurately both spatially and 
temporally over large areas. This is different 
than potential evapotranspiration, which can 
be readily calculated using commonly mea-
sured meteorological variables (Donohue, 
McVicar, and Roderick 2010) or instrumental 
equivalents of potential ET such as pan evapo-
ration, which can be readily measured (Roder-
ick, Hobbins, and Farquhar 2009a, 2009b). 

The distinction between actual evapotrans-
piration, potential evapotranspiration, and pan 
evaporation is important (McMahon et  al. 
2013). Potential ET and pan evaporation are 
estimates and measurements, respectively, of 
atmospheric evaporative demand under envi-
ronmental conditions with limitless access to 
water, so they are not representative of actual 
evapotranspiration when and where the sur-
face is not saturated. Actual ET can be concep-
tualized as a two-stage process. In the first 
stage, following sufficient precipitation or irri-
gation, water is freely available, and actual ET 



C H A P T E R  6 :  E A R T H  O B S E R V A T I O N S  F O R  M O N I T O R I N G  W A T E R  R E S O U R C E S  | 89

Empirical methods have also been developed 
to estimate actual ET from surface temperature 
derived from thermal EO data and a vegetation 
index (traditionally the normalized difference 
vegetation index or NDVI). This method has 
been called the “triangle” or “trapezoid” 
method, describing the general shape of the sur-
face temperature versus NDVI data  space 
(Lambin and Ehrlich 1996). The extremes of the 
surface temperature axis of this data space form 
the “cool edge” and “warm edge,” representing 
more or less actual ET, respectively. The NDVI 
axis represents the amount of green vegetation 
cover. The end members of the data space, then, 
represent the maximum and minimum evapo-
ration and the maximum and minimum transpi-
ration. This method provides a linearization of 
the ratio of actual to potential ET (see Van Niel 
and McVicar 2004 for a detailed description). 
The triangle method is suited for estimating 
relative amounts of actual ET over local to 
regional areas, but is less adept at modeling 
absolute amounts of actual ET over large basins 
or continents or comparing actual ET from one 
region to another. 

The main advantage of empirical methods 
is their simplicity; their main disadvantages 
are their reliance on ground measurements of 

actual evapotranspiration. Closing the energy 
and mass balance from Earth observation is 
generally problematic, however, because it 
requires estimating 24-hour latent heat flux 
from as few as a single measurement made at 
a specific time of the day (Kalma, McVicar, 
and McCabe 2008; Van Niel et al. 2012).

Theoretical Basis of Remote Sensing of Actual 
Evapotranspiration 
Empirical methods of estimating actual ET 
take advantage of the numerous links that it has 
to the energy balance, the water balance, and 
vegetation, which allow for various functional 
relationships to be established. For well-
vegetated surfaces, the largest component of 
actual ET is usually transpiration. This means 
that a good estimate of actual ET can some-
times be made using simple statistical relation-
ships with remotely sensed vegetation indexes 
that reflect the dynamics of vegetation green-
ness. For example, Nagler et  al. (2007, 2009) 
and Yebra et al. (2013) find that the enhanced 
vegetation index (EVI) scales actual ET well. 
Although this simple relationship is likely to 
work well in many places, it is not useful 
everywhere. For instance, actual ET over a 
water body might be very high, but this would 
be missed when relating actual evapotranspi-
ration to EVI. As actual ET is also part of the 
water balance, it should, at least for certain 
times and places, have a strong relationship to 
remotely sensed moisture indexes. In particu-
lar, areas of the world that are water limited 
might be well modeled with a simple relation-
ship to a metric of moisture availability. For 
example, to estimate actual ET over arid Aus-
tralia, Guerschman et al. (2009b) use both the 
EVI and the global vegetation moisture index 
with monthly precipitation to define a coeffi-
cient useful for scaling potential ET. They find 
that this method performs well compared to a 
variety of other methods, most of which are 
much more complicated to implement (King 
et al. 2011). Figure 6.5 illustrates the effects of 
basing ET estimates primarily on vegetation.

a. CMRSET model b. PML model

Source: Reproduced with permission from King et al. 2011. © WIRADA. Used with permission. Further 
permission required for reuse.

Note: The CMRSET model (Guerschman et al. 2009b) uses remotely sensed vegetation and moisture 
indexes. The PML model (Zhang et al. 2008) is based primarily on vegetation dynamics. The color 
scale is the same for the two images (blue-red = 0–5 millimeters per day). The location of the region 
shown is 139E-142E, 23S-26S.

Figure 6.5  Examples of Actual Evapotranspiration Estimates for Region in 
Western Queensland, Australia, during Flow Event in February 2004
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et al. 1998; Menenti and Choudhury 1993; Nor-
man et al. 2003; Su 2002). The energy balance 
approach, and in particular the two-layer 
model, has the inherent risk of being over-
parameterized compared to the data likely to 
be available for modeling, especially over large 
basins or continents. Therefore, many attempts 
have been made to make the model parsimoni-
ous with the data available for modeling large 
areas (Roerink, Su, and Menenti 2000; Sobrino 
et al. 2005). 

Energy balance methods often first estimate 
relative evaporation (that is, the evaporative 
fraction) by defining “hot” and “cold” pixels 
from the image (for example, SEBAL, the Sur-
face Energy Balance Algorithm for Land; Bas-
tiaanssen et al. 1998) or by defining hypothetical 
“dry” and “wet” conditions determining the 
theoretical limits to evaporation (for example, 
SEBS, the Surface Energy Balance System; Su 
2002). For an algorithm like SEBAL, for exam-
ple, identifying appropriate “hot” or “cold” 
pixels is paramount, making it sometimes 
suited to use in agricultural areas with adja-
cent dryland and irrigated types of land cover. 
In other environments with less hydrologic 
contrast or when the area of interest is too 
large (covering drastically different climate 
zones), however, representative “hot” or “cold” 
pixels may not be readily found, making SEBAL 
less suitable. Furthermore, energy balance 
methods usually do not explicitly consider 
evaporation due to interception, even though 
interception can represent more than 20 per-
cent of precipitation for certain types of vege-
tation (Miralles et al. 2010). 

Most common applications of energy bal-
ance methods have used data from polar-
orbiting platforms such as AVHRR (Advanced 
Very High Resolution Radiometer), MODIS, 
and Landsat (table 6.4). Resultant values rep-
resent an “instantaneous” flux, which 
requires scaling to actual ET integrated over a 
longer time period (for example, a day or a 
month) to be relevant to hydrology. Subse-
quent scaling of latent heat to daily or monthly 
actual ET is a source of considerable 

actual ET and, generally, the inability to be 
improved via better process understanding. 
That is, once more or better ground data 
become available, it will probably be possible 
to improve these types of models by optimizing 
the fit, but they are mostly statistical in nature 
so they have limited capacity to inform process 
understanding. They also generally do not 
allow for better estimation based on improved 
understanding of the system. Nonetheless, 
empirical approaches can be a practical way to 
estimate actual ET.

Energy Balance Methods
The Earth’s surface is heated by solar radiation 
and loses this heat through long-wave radia-
tion, sensible heat flux (that is, heating the air), 
and latent heat flux (that is, using energy to 
evaporate water). Surface temperature can be 
used to estimate sensible heat flux. If net radia-
tion (that is, incoming minus outgoing radia-
tion) and changes in heat storage can be 
estimated as well (Zhu et al. 2014), latent heat 
flux can be calculated as the difference between 
all of these terms because of the requirement 
for energy balance (that is, the law of conserva-
tion of energy). 

Most energy balance methods for estimating 
actual ET use satellite-derived radiometric or 
“skin” temperature data. Some of these models 
explicitly recognize that surface temperature 
measured by satellite is sometimes insufficient 
to solve the energy balance accurately by mod-
eling two separate “layers,” one in the vegeta-
tion canopy and one at ground surface, 
generally called two-layer models. They 
approximate a set of simultaneous equations 
that estimate an equal number of unknowns 
(Friedl 1995; Jupp et  al. 1998), one of them 
being the effective surface temperature that is 
required in the energy balance equation. 
Energy balance methods require modeling of 
available energy and aerodynamic resistance, 
which are potential sources of uncertainty. 

Various implementations of the energy bal-
ance method have been developed (Anderson 
et al. 2007, 2011; Bastiaanssen et al. 1998; Jupp 
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EO data are not a pure solution to this problem 
due to issues regarding specific time-of-day 
acquisition, cloud cover, and differences 
between the radiometric “skin” temperature 
received at the sensor and the effective surface 
temperature that solves the energy balance at 
ground level. In days prior to operational EO-
based land surface temperature products, the 
so-called Penman-Monteith “combination 
equation” was derived, eliminating the need to 
estimate surface temperature (Monteith 1965, 
1981; Penman 1948). 

The Penman-Monteith equation combines 
the aerodynamic formulation of actual evapo-
transpiration and the energy balance with an 
approximation of the saturation vapor pres-
sure calculated at surface temperature. The 
problem with using the Penman-Monteith 
equation, however, is that, although the need 
to know surface temperature was eliminated, 
it was replaced by a different unknown param-
eter—the surface (or canopy) conductance 
(sometimes written in the form of resistance, 
in which case it would be the surface or canopy 
resistance). While the number of unknown 
parameters remains unchanged, one 

uncertainty (McVicar and Jupp 2002; Van 
Niel et al. 2011, 2012). However, because the 
energy balance approach makes use of 
“instantaneous” surface temperature, it is 
directly suited to the use of geostationary 
data. For example, the algorithm disALEXI 
uses geostationary data over North America 
to observe the change in surface temperature 
during the morning (Anderson et  al. 2011), 
making it suitable for modeling flux, which is 
closer to the theoretical nature of the phe-
nomena being estimated. The advantage of 
the energy balance method is that it counters 
the main disadvantage of the empirical 
approaches: energy balance methods are emi-
nently suited to inform and be improved by 
better process understanding. 

Penman-Monteith Methods
One of the main obstacles to calculating actual 
evapotranspiration from an energy balance 
perspective is the need to derive the effective 
surface temperature of an area. This is particu-
larly problematic when the area of interest 
(that is, a pixel) is heterogeneous (for example, 
partly vegetated and partly bare soil). Thermal 

Table 6.4 Overview of Sensors Most Suitable for Estimating Actual Evapotranspiration from EO Data

ORBIT AND 

SATELLITE SENSOR 

SYSTEM

PIXEL SIZE 

(METERS)

SPECTRAL 

BANDS REVISIT CYCLE

RAW DATA COST 

PER SQUARE 

KILOMETER (US$)

DATE LAUNCHED 

(END) OR 

PLANNED LAUNCH EMPIRICAL PM LAI REBM

Polar	orbiting

MODIS 250–1,000 29 2 times a day Free 2000 ❶ ❶ ❶

VIIRS and JPSS 375–750 14 2 times a day Free 2012 ❶ ❶ ❶

AVHRR 1,000 4 Daily Free 1981 ❷ ❶ ❶

Landsat 5 TM 30–90 7 16 days Free 1985 (2012) ❶ ❶ ❶

Landsat 7 ETM+ 30–60 8 16 days Free 2000 ❶ ❷ ❷

Landsat 8 30–100 11 16 days Free 2013 ❶ ❶ ❶

Geostationary

GOES (2nd and 3rd 
generation)

1,000–4,000 4 15 minutes Free 1994 ❷ ❶ ❶

Meteosat (2nd 
generation) 

1,000–3,000 7 15 minutes Free 2002 ❶ ❶ ❶

Himawari-8 500–2,000 10 15 minutes Free 2014 ❶ ❶ ❶

Note: The suitability of each sensor to provide data useful for the three classes of models is shown with numbers and colors, as follows: ❶ highly suitable, ❷ suitable. 
AVHRR = Advanced Very High Resolution Radiometer; ETM+ = Enhanced Thematic Mapper Plus; GOES = geostationary operational environmental satellite; JPSS = Joint Polar 
Satellite System; MODIS = Moderate Resolution Imaging Spectrometer; PM LAI = Penman-Monteith leaf area index; REBM = resistance energy balance model; TM = Thematic 
Mapper; VIIRS = Visible/Infrared Imager Radiometer Suite.
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Furthermore, the so-called FAO-56 method 
(Allen et al. 2007) can be seen as an intermedi-
ate method in that it calculates a hypothetical 
evapotranspiration for an idealized crop and 
then applies an empirical method to scale this 
hypothetical ET factor. The satellite-based 
method developed by Guerschman et  al. 
(2009b) is akin to the FAO-56 approach. Since 
it is suitable for use with higher-spatial-
resolution sensors like Landsat ETM+, it (and 
methods like it) can be used for estimating 
actual evapotranspiration at the level of an irri-
gation scheme, farm, or even a field (figure 6.6). 

Because there are various global EO-based 
vegetation data sets, the Penman-Monteith 
equation is commonly used to estimate actual 
ET. However, just as is the case for purely 
empirical relationships, the Penman-Monteith 
approach will not necessarily perform well 
where actual ET is not driven primarily by tran-
spiration. To implement the approach over vast 
areas, it also relies on a model of available 
energy and aerodynamic conductance, which 
may add considerable error or uncertainty 
to  the estimation. The Penman-Monteith 
approach models actual ET through the link 
between vegetation and energy balance; thus 
the main impediment to its implementation is 
the need to determine surface conductance. 
However, due to the reliance of the Penman-
Monteith method on vegetation dynamics and 
stomatal conductance, the relationship between 
this actual ET estimate and crop growth or 
gross primary production modeling is closer. 

Methods have been developed that use sat-
ellite LAI products to estimate surface conduc-
tance from an assumed (or optimized) leaf-level 
stomatal conductance value. Some readily 
available global vegetation LAI products from 
Earth observation have promoted the develop-
ment of LAI-scaled global ET estimates (Mu, 
Zhao, and Running 2011; Zhang et al. 2012). 

Past, Present, and Future Sensor Availability 
for Mapping Actual Evapotranspiration 
Table 6.4 lists some existing and planned sen-
sors that can provide estimates of actual ET. 

advantage is that this model allows for the 
unknown parameter to be addressed in a dif-
ferent way: through conductance. Conduc-
tance is a parameter associated with 
transpiration and carbon assimilation in the 
process of photosynthesis, so it allows estima-
tion of actual ET through vegetation 
characteristics.

The Penman-Monteith equation is a process-
based model, so it is in a different category than 
the empirical relationships primarily using sta-
tistically fitted relationships between actual ET 
and vegetation indexes. It is based, to  a large 
degree, on the energy balance, but as surface 
conductance is commonly modeled through 
remotely sensed vegetation products like a veg-
etation index or a leaf area index (LAI), it is also 
considered to be in a different category than the 
energy balance methods discussed above. How-
ever, the three types of methods sometimes 
overlap, making their distinction less clear. 

For example, surface conductance is an 
unknown, and only empirical methods are 
available to estimate it. Yebra et  al. (2013) 
compares fully empirical approaches with 
Penman-Monteith approaches, including 
approaches based on the MODIS leaf area 
index and on the Guerschman et al. (2009b) 
crop factor approach. They conclude that, 
among these, the best approach to modeling 
actual ET is through the use of an empirical 
relationship to estimate surface conductance 
from vegetation indexes, where each of the 
three indexes tested (enhanced vegetation 
index [EVI], normalized difference vegetation 
index [NDVI], and the Guerschman Kc index) 
has specific strengths and weaknesses. 

Alternatively, surface conductance can be 
modeled using estimates derived from field 
measurements, whether by upscaling leaf-
level measurements of stomatal conductance 
(Kelliher et  al. 1995) or by using field-level 
estimates of surface conductance derived from 
lysimeters or other water balance methods, or, 
more commonly in recent years, by using 
micrometeorological methods and flux tower 
Eddy covariance measurements, in particular. 
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models just described. Examples of these three 
categories, with relevant references, are pro-
vided in table 6.5. As discussed above, each 
approach has strengths and weaknesses. The 
simplicity of the empirical approach is offset 
by its inability to inform and be informed by 
process understanding. The ability of the Pen-
man-Monteith approach to estimate actual ET 
better through vegetation dynamics is offset by 
its inability to model water bodies or soil evap-
oration. The ability of the energy balance 
approach to inform process understanding and 
use geostationary thermal data is offset by dif-
ficulties in scaling instantaneous observations 
to longer time periods and relative ET to abso-
lute ET as well as by model complexity. Fur-
thermore, while the approaches have been 
classified into three categories, specific 
 implementations may sometimes blur these 
 distinctions. 

While it is unlikely that any single approach 
will be best suited to estimate actual ET for all 
situations, a common relevant issue is having a 
system in place for robust and repeatable assess-
ment of ET models. For instance, the ET inter-
comparison and evaluation framework within 
Australia was designed to assess eight conti-
nental models of actual ET to help to inform 
the Australian Water Resources Assessment 

Most optical sensors can be used for mapping 
actual ET for at least one of the three general 
categories. Those sensors that include bands 
in the visible (VIS) and near-infrared (NIR) 
spectrum are generally suited to empirical 
methods using vegetation indexes and to the 
Penman-Monteith approach (which also 
requires meteorological data). Sensors having 
short-wave infrared (SWIR) bands in addi-
tion to VIS-NIR bands allow for determining 
empirical relationships with moisture indexes 
and for estimating actual ET from surfaces 
with no vegetation, including water bodies. 
Many of the optical sensors also record ther-
mal data, making them suitable for both 
empirical and energy balance approaches 
that use surface temperature. MODIS, Land-
sat, and VIIRS (Visible/Infrared Imager 
Radiometer Suite) are examples of sensors 
that acquire the data useful for all three cate-
gories of models. Sensors like AVHRR do not 
have SWIR bands, but are useful in the vege-
tative index and surface temperature-based 
approaches. 

Existing RS-Based Data Products and 
Services for Actual Evapotranspiration
There are numerous EO-based implementa-
tions of the three categories of actual ET 

a. January 31, 2005 b. April 3, 2005

ETa (mm/day)

0.0 7.03.5

Source: Emelyanova et al. 2012. © CSIRO. Used with permission. Further permission required for reuse.

Note: The top row shows false color composites of the original Landsat TM (thematic mapper) imagery; the bottom row shows estimated actual 
evapotranspiration rates. The colors in the top row correspond to vigorous vegetation (green), open water (black-blue), and dry land (purple).

Figure 6.6  Mapping of Actual Evapotranspiration Using High-Resolution Satellite Images for Part of Lower 
Gwydir Region in New South Wales, Australia
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Table 6.5 Examples of Studies Using the Three General Classes of Actual ET Models

TYPE OF MODEL AND EO ALGORITHM REFERENCES

Empirical

CMRSET Guerschman et al. 2009b

Surface temperature versus NDVI Lambin and Ehrlich 1996

Actual ET versus EVI Nagler et al. 2007, 2009

Penman-Monteith

Unnamed Yebra et al. 2013 

Unnamed Cleugh et al. 2007

PML Leuning et al. 2012; Zhang et al. 2008

MODIS ET Mu, Zhao, and Running 2011

Energy	balance

SEBAL Bastiaanssen et al. 1998

SEBS Su 2002  

ETWatch Wu et al. 2012

S-SEBI Roerink, Su, and Menenti 2000; Sobrino et al. 2005

dis(ALEXI) Anderson et al. 2007; Norman et al. 2003

NDTI Jupp et al. 1998; McVicar and Jupp 2002

Note: ALEXI = Atmosphere-Land Exchange Inverse; CMRSET = CSIRO MODIS Reflectance-based Scaling ET; EO = Earth observation; ET = evapotranspiration; EVI = enhanced 
vegetation index; MODIS ET = Moderate Resolution Imaging Spectrometer evapotranspiration; NDTI = normalized difference temperature index; NDVI = normalized difference 
vegetation index; PML = Penman-Monteith-Leuning; SEBAL = Surface Energy Balance Algorithm for Land; SEBS = Surface Energy Balance System; S-SEBI = Simplified Surface Energy 
Balance index.

(AWRA; see appendix B). Key to this type of 
assessment framework is some form of field 
measurement, which can be used in the ET 
model itself (for empirical methods) and for 
validation of all types of models. So-called Eddy 
covariance flux data are often used for these 
purposes.5 

For places where no ground measure-
ments exist, EO-based models of actual ET 
can still be used, but in the absence of error 
assessment, their suitability for management 
purposes may not be known with certainty. 
Figure 6.7 illustrates the accuracy that might 
be expected for a forested site, where actual 
ET is not overly challenging to estimate. Typ-
ically, at moderate to low resolution (about 
5  kilometers, monthly time step), actual ET 
can be estimated to within 1 millimeter per 
day or better. Of course, this will depend on 
site, algorithm, and data characteristics. 
Other important considerations are reliabil-
ity, maturity, and complexity of the system 
required to produce the estimate of actual ET.

Soil Moisture 
Definition
Soil moisture is defined as the amount of water 
in the uppermost layers of the soil column, 
where the definition of “uppermost” varies 
depending on sensing technology or modeling 
application and can vary from the top 1 centi-
meter to the first 1 meter of soil or more. Soil 
moisture is highly variable in space and time, 
and its importance to water resources is appar-
ent via the link between key water balance 
terms and hydrologic processes in the soil col-
umn. As a measure of catchment antecedent 
moisture6 condition, soil moisture affects the 
amount of evaporation from soil, transpiration 
by vegetation, and partitioning of rainfall into 
infiltration and surface runoff. Soil moisture 
has had a role in characterizing hydroclimate 
and monitoring the effects of climate change 
(for example, drought monitoring; Bolten et al. 
2010) for more than 20 years, but this role has 
been “formalized” only relatively recently by 
its listing among the World Meteorological 
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through calibration and data assimilation (Zreda 
et al. 2012). Both field-based and proximal sens-
ing are valuable information sources in their 
own right, and they provide essential data for 
the evaluation and calibration of satellite-
derived and modeled soil moisture products, 
helping to build confidence in their accuracy. 

Global monitoring of soil moisture is only 
achievable with satellite Earth observation in 
conjunction with field-based soil moisture 
monitoring networks. Satellite soil moisture 
products have been derived from a contiguous 
series of space-borne sensors spanning 30 years 
(Liu et al. 2012). However, the first dedicated 
soil moisture monitoring mission from space 
was not launched until 2009 (Kerr et al. 2012). 
Time series of satellite soil moisture have been 
used in climate studies (Jung et  al. 2010; Liu 
et  al. 2009; Seneviratne et  al. 2010) and have 
refined our understanding of rainfall genera-
tion processes (Taylor et al. 2012). 

The assimilation of satellite soil moisture 
into land surface models has been shown to 
improve soil water representation in the 

Organization’s Global Climate Observing Sys-
tem essential climate variables (Bojinski et al. 
2014).

Soil moisture monitoring has advanced con-
siderably over the last decade, with burgeoning 
innovative ground- and satellite-based technolo-
gies for large-area monitoring (for a comprehen-
sive summary, see Ochsner et  al. 2013). These 
technologies include coordinated global net-
works of field-based sensors (Dorigo et al. 2013; 
Smith et al. 2012) and a novel proximal sensing 
technique based on cosmic ray detectors (Desi-
lets, Zreda, and Ferré 2010; Zreda et al. 2012). 

While field-based detectors can measure 
moisture very accurately at various depths for a 
point in the landscape, cosmic ray probes pro-
vide an integrated root-zone moisture measure-
ment for an area of about 600 meters in diameter 
(Desilets and Zreda 2013)—an area suitable for 
many agricultural and land management appli-
cations. Cosmic ray probes have been applied 
beyond root-zone soil moisture sensing, includ-
ing estimating aboveground biomass (Franz 
et al. 2013) and constraining land surface models 
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Figure 6.7  Comparison of Actual ET Estimates 
Derived from the NDTI Model with Actual ET 
Measurements from the Tumbarumba, NSW, Flux 
Tower
Source: Reproduced from King et al. 2011. © WIRADA. Used with 
permission. Further permission required for reuse.

Note: In the top panel, the blue dots represent actual ET estimates 
from the normalized difference temperature index model (Jupp et al. 
1998; McVicar and Jupp 2002), which are compared to actual ET 
measurements from the Tumbarumba, NSW, flux tower (black 
dashes). The red dots in the bottom panel show the differences 
between model estimates and the flux tower measurements (in units 
of millimeters per day). ET = evapotranspiration; NDTI =  normalized 
difference temperature index.
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thereafter with several field experiments involv-
ing tower-mounted and airborne microwave 
radiometers (Jackson and Schmugge 1989). 
Until that point, the primary use of microwave 
instruments on satellites had been communica-
tions, monitoring of snow and sea ice extent, 
and atmospheric soundings of temperature and 
moisture. It was only in the early 2000s that 
these space-based microwave sensors started 
being used to estimate soil moisture, with the 
first global satellite soil moisture products avail-
able in 2002 (de Jeu and Owe 2003; Wagner 
et al. 2003; figure 6.8). 

Satellite soil moisture sensing technology is 
based on either radiometric measurements of 
emissions from the soil (the so-called passive 
microwave approach) or radar technology 
transmitting pulse of electromagnetic radiation 
to the Earth’s surface and measuring the back-
scattered signal (the so-called active approach). 
One of the defining characteristics separating 
active and passive sensors is their contrasting 
spatial resolution: passive sensors require large 
integrating areas for adequate signal-to-noise 
(ratios)7 so the instantaneous field-of-view 
(pixel) has a resolution of 30–120 kilometers, 
whereas the resolution of active systems, for a 
given frequency, is a function of beam width, 
pulse duration, and satellite antenna length. 
This means that the resolution required to sus-
tain a good signal-to-noise ranges from about 
10 meters to 10 kilometers. Examples of active 
and passive satellite EO systems used in the 
production of global soil moisture products are 
listed and defined in table 6.6. They include 
SSM/I, TMI (TRMM Microwave Imager), 
AMSR-E (Advanced Microwave Scanning 
Radiometer for EOS), AMSR2 (Advanced 
Microwave Scanning Radiometer2), and SMOS 
(Soil Moisture and Ocean Salinity Sensor) for 
passive radiometry and ERS (European Remote 
Sensing Satellite), ASAR (Advanced Synthetic 
Aperture Radar), and ASACT (Advanced Scat-
terometer) for active scatterometry. 

Until recently, satellite soil moisture prod-
ucts were typically derived from X- and C-band 

models (Draper et  al. 2012; Renzullo et  al. 
2014) and led to improvements in estimated 
evaporative fluxes, drainage, and discharge 
(Brocca et al. 2012; Dharssi et al. 2011; Draper 
et  al. 2011; Pipunic et  al. 2013; Reichle and 
Koster 2005). It is through integration with 
landscape hydrology models and field-based 
monitoring networks (via calibration and data 
assimilation) that the satellite soil moisture 
products offer greatest potential for monitor-
ing large-area water resources, particularly as 
a constraint for parts of the Earth where tradi-
tional ground observation networks have 
sparse, intermittent, or no coverage at all.

Brief Summary of Soil Moisture  
Sensing from Space
The dielectric properties of soil are greatly 
altered by the amount of liquid water present in 
the soil. The relationship between moisture in 
the soil and emitted radiation (about 1–20 giga-
hertz or a 1.5–30-centimeter region of the elec-
tromagnetic spectrum) has been conceptually 
understood since the 1970s and encapsulated in 
various physical models (Dobson et  al. 1985; 
Wang and Schmugge 1980). The potential 
 for Earth observation to measure soil moisture 
on a small scale was demonstrated shortly 

AMSR-E soil moisture [m3 m–3]

0.30.10 0.70.5

Source: CSIRO, using data from Owe, de Jeu, and Holmes 2008. © CSIRO. Used with permission. 
Further permission required for reuse.

Note: Satellite soil moisture products for January 2, 2006, derived by applying the retrieval algorithm 
of Owe, de Jeu, and Holmes (2008) to the descending passes of the AMSR-E sensor aboard NASA’s 
Aqua satellite. AMSR-E = Advanced Microwave Scanning Radiometer for EOS; NASA = National 
Aeronautics and Space Administration.

Figure 6.8  Remote Sensing–Based Soil Moisture Monitoring
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moisture retrievals from active and passive sen-
sors due to their respective performance across 
different landscapes. For example, Dorigo et al. 
(2010) derived the error structure of the AMSR-
E (passive) and ASCAT (active) soil moisture 
products over the globe using a statistical tech-
nique called triple collocation (Scipal et  al. 
2008). Examination of the error patterns 
showed that AMSR-E errors were largest in 
landscapes with a moderate to high level of tree 
cover, due to the influence of vegetation on the 
emitted signal, while ASCAT errors were larg-
est in dry arid areas, due to the scattering prop-
erties of dry soil and undulations (dunes) in 
those landscapes. Others have reported similar 
findings; for example, Draper et al. (2012) show 
that assimilating ASCAT into NASA’s catch-
ment model led to significantly  less accurate 
estimates of root-zone moisture over highly 
variable terrain compared to using AMSR-E. 

Comparing the accuracy of satellite soil 
moisture estimates with surface measure-
ments is necessary to gain acceptance of the 
products by the user community and often 
involves evaluations against field-based soil 
moisture measurements, such as individual 
soil moisture products (Albergel et  al. 2011), 
alternative soil moisture products from the 
same sensor (Draper et al. 2009), or soil mois-
ture products across sensors (Su et  al. 2011, 
2013). However, care must be taken to use con-
sistent definitions when comparing soil mois-
ture values using model and field-based 
measurements. Differences may be observed 
due to incompatibility of soil moisture units, 
spatial resolution (that is, from point to pixel), 
sampling depth (emission depth), as well as 
differences in the product-processing meth-
ods. Given the range of potential sources of 
inconsistency, drawing conclusions from 
observed differences poses difficulties (Leroux 
et al. 2013; Wagner et al. 2003). 

Investigations often reveal that no one soil 
moisture product is “best” for all locations and 
applications and that it is advisable to exploit 
the complementarity between products 

microwave signals (8–12 and 4–8 gigahertz fre-
quency range, respectively), which means that 
their values correspond to emissions or back-
scatter from the top 1–2 centimeters of soil. 
The launch of SMOS (Barré et al. 2008) ush-
ered in a new era of L-band (1–2 gigahertz or 
15–30 centimeters) sensing technology dedi-
cated to monitoring soil moisture in the top 5 
centimeters of soil, which will continue with 
the scheduled launch of Soil Moisture Active 
Passive (SMAP) (Entekhabi et al. 2010).

The SMAP mission of the National Aero-
nautics and Space Administration (NASA) 
launched in January 2015 is the first dedicated 
soil moisture sensing mission to combine both 
active and passive sources for high-resolution 
(about 10 kilometers) mapping of soil moisture 
for the globe on a daily basis.

Satellite Soil Moisture Products
Satellite soil moisture products are generated 
by different groups around the world, includ-
ing government research agencies (NASA, 
JAXA, European Space Agency [ESA], the 
National Snow and Ice Data Center [NSIDC]) 
and universities (VU University of Amsterdam, 
Vienna University of Technology). Different 
groups have used different retrieval algorithms 
to derive soil moisture from brightness tem-
perature observations by the same satellite 
sensors. For example, the University of Amster-
dam and NSIDC derive soil moisture from 
C-band brightness temperature data from the 
AMSR-E, but they employ different retrieval 
schemes and radiative transfer model parame-
terization (detailed in Owe, de Jeu, and Holmes 
2008 and Njoku et al. 2003, respectively). Dif-
ferent products may represent soil moisture 
values quite differently; for instance, values 
based on radiative transfer equations are typi-
cally expressed in volumetric or gravimetric 
units, while scatterometer-derived estimates 
are expressed in percentage wetness or degree 
of saturation (0–100 percent). 

Beyond differences in resolution, there is 
demonstrated complementarity of satellite soil 
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Global maps of the freeze-thaw state have 
been derived from satellite microwave sensors 
spanning the last 30 years at 0.25° resolution 
(Kim et  al. 2011). The freeze-thaw products 
are raster maps with three discrete classes: 
frozen, thawed, and transitional, where the 
transitional class can be further divided into 
transitional (a.m. frozen, p.m. thaw) or inverse-
transitional (a.m. thaw, p.m. frozen) using suc-
cessive day-night  passes. The SMAP mission 
aims to generate freeze-thaw coverage for the 
globe at 3-kilometer resolution with a two-day 
repeat cycle for latitudes above 50° north 
(McDonald, Kimball, and Kim 2010). 

Considerations for Use in Water Management 
Applications 
Although satellite technologies only provide soil 
moisture information for the very few top centi-
meters of soil, the data have been shown to be 
useful in climate studies (Jung et  al. 2010; 
 Taylor et al. 2012), weather forecasting (Dharssi 
et  al. 2011), and hydrologic prediction (Brocca 
et al. 2010, 2012; Pauwels et al. 2002), especially 
in combination with land surface models by 
data assimilation (Draper et al. 2012; Renzullo 
et  al. 2014). Land surface model estimates of 
root-zone moisture are demonstrably improved 
through the assimilation of satellite soil mois-
ture. The value to water resources management 
(WRM) is further enhanced through the esti-
mated constraint that the model imparts to 
other components of the water cycle (evapo-
transpiration and runoff ). Root-zone soil mois-
ture is useful for monitoring drought and 
modeling landscape ecology. However, the 
coarse spatial resolution of the data is probably 
an impediment to widespread adoption, espe-
cially in agricultural applications. Climate stud-
ies require long time series of harmonized soil 
moisture values. This has recently been achieved 
by Liu et al. (2012), using 30 years of soil mois-
ture data derived from several satellites.

The complementarity of active and passive 
soil moisture retrievals has been recognized. It 
is envisaged that future application of satellite 

(active, passive, and modeled) and to generate 
merged soil moisture estimates (Draper et al. 
2012; Liu et  al. 2012; Renzullo et  al. 2014). 
Knowing how each source of soil moisture 
data should be used to produce the most suit-
able merged estimates requires spatially 
explicit quantification of the random errors of 
each product (see figure 6.9 for an example). 
This is where the triple collocation technique 
has gained popularity in the community of sat-
ellite soil moisture data users (Dorigo et  al. 
2010; Miralles et  al. 2010; Scipal et  al. 2008; 
Yilmaz and Crow 2014; Zwieback et al. 2012).

In addition to measuring moisture in the 
uppermost layers of the soil column, satellite 
microwave sensors are used to map the land 
surface freeze-thaw state. Like soil moisture, 
satellite mapping of global freeze-thaw state is 
achieved by exploiting the large difference in 
dielectric properties between frozen and 
thawed surfaces. The freeze-thaw state of the 
land surface is an important link between the 
hydrologic cycle and the carbon cycle via veg-
etation dynamics, specifically plant phenology 
(Kimball, McDonald, and Zhao 2006).

Error in satellite soil moisture
(relative wetness units 0–1)

a. ASCAT (active) b. AMSR-E (passive)

0.05 0.10 0.15 0.20

Source: Adapted from Renzullo et al. 2014.

Note: Error estimates for soil moisture products from ASCAT (active) and AMSR-E (passive) 
microwave sensors for Australia derived using the popular triple collocation technique. The 
technique requires three independent estimates of soil moisture to infer the errors in the respective 
data. The third product used (not displayed) was a top-layer soil moisture estimate from the 
Australian Water Resources Assessment (AWRA) landscape model. White spaces in the maps 
correspond to locations where the temporal dynamics of the three soil moisture data differed 
significantly and the triple collocation technique did not yield an estimate. AMSR-E = Advance 
Microwave Scanning Radiometer–Earth Observing System; ASCAT = Advanced Scatterometer.

Figure 6.9  Comparing Error Estimates for Soil Moisture Products Derived 
from Active and Passive Microwave Sensors Using Triple Collocation 
Technique
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Earth observation can also be used to clas-
sify vegetation into distinct types of vegeta-
tion cover that describe various combinations 
of growth form (trees, shrubs, grasses), phe-
nology (deciduous, nondeciduous), and some-
times climate types (temperate, arid, tropical). 
Data on type of vegetation cover provide a 
convenient, but static, means of summarizing 
the broad roles of different functional types of 
vegetation. Typical types may include forest, 
grassland, and cropland. When nonvegetation 
classes such as water, snow, urban, and bare 
soil are included, the categorization might 
better be referred to as land cover types.

One of the most important roles of vegetation 
in the water cycle is to modify evaporation rates. 
In order to photosynthesize, vegetation extracts 
soil water and groundwater and evaporates it 
into the atmosphere as transpiration. As a result, 
positive relationships exist between transpira-
tion rates and leaf photosynthetic capacity and 
between transpiration rates and leaf area. Tran-
spiration rates also tend to be positively related 
to rooting depth: the deeper the rooting system, 
the greater the capacity of the soil to store water 
for plants, which means a greater proportion of 
precipitation has the potential to become tran-
spiration and a smaller proportion becomes 
runoff. Vegetation also affects the energy bal-
ance by changing surface albedo (that is, the 
reflectivity of the land surface). Albedo alters 
the amount of sunlight absorbed at the land sur-
face, which can change ET rates.

In regions prone to soil water deficits, 
remotely sensed information may be used to 
assess the magnitude of the impact of such def-
icits on vegetation health and be interpreted in 
terms of ecosystem health, range productivity, 
and crop production, for example. This 
explains the direct use of vegetation EO data in 
some drought monitoring systems.

Vegetation can also affect pollutant mobiliza-
tion and hence water quality, particularly in 
relation to nutrients and sediment loads. In gen-
eral, for a given intensity of precipitation event, 
the higher the amount of bare soil, the greater 

soil moisture studies to climate, weather, and 
water resources management will be based on 
products that combine the typically higher 
accuracy but coarser resolution of passive sen-
sors with the higher spatial resolution but 
noisier signal of active sensors. Indeed, this is 
the motivation behind the SMAP mission, 
which will be the first dedicated soil moisture 
monitoring mission carrying both active and 
passive sensing systems. 

Vegetation and Vegetation Cover 
Definition
Vegetation is the collective term for the cover-
age of plants across land areas. Vegetation 
attributes and processes relate to the emergent 
properties and functioning of those plants 
when considered at the landscape scale. Vege-
tation can be characterized quantitatively 
using measures of height, canopy and stem 
density, and leaf area, among others. It can also 
be described qualitatively, as vegetation classes 
or cover types, such as forest, croplands, 
 tundra, and the like. 

Relevance 
The role of vegetation in the hydrologic cycle is 
well established (Budyko and Miller 1974; 
Monteith 1972; Ol’dekop 1911; Rodríguez-
Iturbe et al. 2001; Specht 1972), modifying the 
direct role of the climate in the partitioning of 
precipitation between evaporation and runoff. 
It has been estimated that between 80 and 
90 percent of terrestrial evaporation is trans-
pired by vegetation (Jasechko et  al. 2013). 
Besides impoundments, vegetation is the main 
pathway by which humans modify the terres-
trial water balance. Far from being a passive 
factor, vegetation has a significant and highly 
dynamic impact on its surroundings, influenc-
ing just about all land surface processes. The 
ubiquitous, exposed, and temporally dynamic 
nature of vegetation means that Earth observa-
tion is a powerful and cost-effective means of 
quantifying many of the key roles that vegeta-
tion plays in the hydrologic cycle. 
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estimates of albedo, fractional foliage cover, 
fPAR, and LAI, if total leaf area is reasonably 
low. The enhanced vegetation index, which is a 
MODIS-derived product (Huete et al. 2002), is 
increasingly used. It is also highly correlated 
with LAI but is less sensitive to saturation (that 
is, the diminished ability to estimate LAI accu-
rately in high leaf areas). 

Table 6.7 outlines the most prominent 
sources of these core vegetation-related vari-
ables. Current sources are listed, as are 
expected future sources. Historical sources are 
also shown, as these are important for looking 
at the long-term dynamics in vegetation (for 
drought monitoring, for example). The infor-
mation in table 6.7 was obtained from the Com-
mittee on Earth Observation Satellites’s Earth 
Observation Handbook and the World Meteo-
rological Organization’s Observing Systems 
Capability Analysis and Review Tool, both of 
which are excellent resources.8

Numerous studies evaluate and compare 
some of these products within and across differ-
ent satellite sensors, globally and regionally 
(Beck et al. 2011; Hill et al. 2006; Morisette et al. 
2006; Tucker et al. 2005). Often, a product devel-
oped regionally will outperform, for that region, 
a product derived globally. For this reason, cau-
tion is sometimes warranted when using glob-
ally derived products in regional applications.

Other vegetation characteristics can also be 
of use to WRM applications. Leaf photosyn-
thetic capacity is an important predictor of 
crop growth. It is not generally, and certainly 
not routinely, estimated using Earth observa-
tion, as it requires hyperspectral sensors. It is, 
however, an emerging EO product (Houborg 
et al. 2013; Wu et al. 2009).

Rooting depth cannot be observed with 
remote sensing. Yet there are methods for esti-
mating rooting depth indirectly from water 
balance models (Ichii et al. 2006), which can be 
driven by Earth observation, often via remotely 
sensed evapotranspiration. These methods 
typically use rooting depth as a tuning param-
eter in either water balance or gross primary 

the rate of soil erosion will be. So the larger the 
total cover—including both foliage and litter 
cover—the better water quality tends to be. 

Since vegetation does not directly deter-
mine water supply or demand (as do precipita-
tion, radiation, and others), but instead 
modifies these things, information on vegeta-
tion is typically used as one of numerous inputs 
into water balance models to represent the 
indirect effect of vegetation on the water cycle. 

Some of these key vegetation attributes can-
not be observed directly with remote sensors. 
Instead, it is common to use structural attri-
butes of vegetation, aggregated into vegetation 
cover types, as surrogates. So, for example, tall 
vegetation with high foliage cover is typically 
associated with forests. Forests usually have 
high leaf area and deep roots and so have 
 relatively high transpiration rates. Conversely, 
grasslands and pastures have low vegetation, 
with more variable leaf area, shallower roots, 
and relatively low transpiration rates.  Assigning 
general attributes to broad types of vegetation 
is the basis for using data on vegetation cover 
class in most water cycle analyses.

Remote Sensing of Vegetation 
The most important and widely used satellite-
derived, vegetation-related variables are albedo, 
LAI, and fPAR (the fraction of sunlight absorbed 
by foliage). Of these, only albedo is more or less 
directly observed by the satellite. The remaining 
attributes can only be inferred using related 
metrics or EO-driven modeling. Generally 
speaking, any sensor that measures at least 
infrared and NIR reflectance can be used to pro-
duce these products. Leaf area is almost univer-
sally represented by the LAI (the area of leaves 
per unit of ground area). It is also nearly linearly 
related to fPAR and fractional foliage cover (the 
fraction of ground covered by green foliage), 
when leaf areas are low (that is, LAI less than 6). 

LAI and fPAR are typically derived from 
NDVI, which is calculated from infrared and 
NIR reflectance values. Methods have been 
developed to use NDVI to produce approximate 



C H A P T E R  6 :  E A R T H  O B S E R V A T I O N S  F O R  M O N I T O R I N G  W A T E R  R E S O U R C E S  | 103

Ta
bl

e 
6.

7 
O

ve
rv

ie
w

 o
f S

en
so

rs
 M

os
t 

Su
it

ab
le

 fo
r E

st
im

at
in

g 
Ve

ge
ta

ti
on

 a
nd

 L
an

d 
Co

ve
r 

D
A

TA
 C

U
RR

EN
C

Y
 

A
N

D
 F

U
N

C
TI

O
N

A
L 

TY
PE

 O
F 

SE
N

SO
R

M
IS

SI
O

N
 

IN
ST

RU
M

EN
TS

M
IS

SI
O

N
 N

A
M

E 

(S
H

O
RT

)

SP
A

TI
A

L 

RE
SO

LU
TI

O
N

 

(M
ET

ER
S)

RE
V

IS
IT

 P
ER

IO
D

 

(D
A

Y
S)

A
C

C
ES

SI
BI

LI
TY

LA
U

N
C

H
 D

A
TE

EN
D

 D
A

TE
N

D
V

I
A

LB
ED

O
fP

A
R

LA
I

A
rc

hi
va

l

O
pt

ic
al

TM
La

nd
sa

t 
5

30
16

O
pe

n
Ju

ly
 19

82
Ju

ne
 2

01
3

❶
❶

❶
❶

M
SS

La
nd

sa
t 

1-
3

80
18

O
pe

n
Ju

ly
 19

72
Se

pt
em

be
r 

19
83

❷
❷

❷
❷

A
V

H
RR

/2
N

O
A

A
 7

-1
4

1,1
00

1
O

pe
n

Ju
ne

 19
81

❶
❷

❶
❹

C
ur

re
nt

A
ct

iv
e 

m
ic

ro
w

av
e

X
-b

an
d 

SA
R

Ta
nD

EM
-X

16
11

O
pe

n
Ju

ne
 2

01
0

❷
❹

❷
❹

X
-b

an
d 

SA
R

Te
rr

aS
A

R-
X

16
11

O
pe

n
Ju

ne
 2

00
7

❷
❹

❷
❹

S-
ba

nd
 S

A
R

H
J-1

C
20

31
O

pe
n

N
ov

em
be

r 2
01

2
❷

❹
❷

❹

SA
R 

(R
A

D
A

RS
A

T-
2)

RA
D

A
RS

A
T-

2
25

24
C

on
st

ra
in

ed
D

ec
em

be
r 2

00
7

❷
❹

❷
❹

O
pt

ic
al

M
SI

Ra
pi

dE
ye

6.
5

1
O

pe
n

A
ug

us
t 

20
08

❷
❷

❷
❷

A
ST

ER
Te

rr
a

15
16

O
pe

n
D

ec
em

be
r 1

99
9

❶
❶

❶
❶

O
LI

La
nd

sa
t-

8
30

16
O

pe
n

Fe
br

ua
ry

 2
01

3
❶

❶
❶

❷

ET
M

+
La

nd
sa

t 
7

30
16

O
pe

n
A

pr
il 

19
99

❶
❶

❶
❷

H
yp

er
io

n
N

M
P 

EO
-1

30
16

O
pe

n
N

ov
em

be
r 2

00
0

O
ct

ob
er

 
20

14
❶

❶
❶

❶

A
W

iF
S

RE
SO

U
RC

ES
A

T-
2

55
26

O
pe

n
A

pr
il 

20
11

❶
❶

❶
❶

LI
SS

-II
I 

(R
es

ou
rc

es
at

)
RE

SO
U

RC
ES

A
T-

2
55

26
O

pe
n

A
pr

il 
20

11
❶

❶
❷

❷

M
IS

R
Te

rr
a

25
0

16
O

pe
n

D
ec

em
be

r 1
99

9
❷

❷
❷

❷

M
O

D
IS

A
qu

a
25

0
16

O
pe

n
M

ay
 2

00
2

❶
❶

❶
❶

M
O

D
IS

Te
rr

a
25

0
16

O
pe

n
D

ec
em

be
r 1

99
9

❶
❶

❶
❶

A
V

H
RR

/3
N

O
A

A
-1

8
1,1

00
1

O
pe

n
M

ay
 2

00
5

❶
❷

❶
❹

A
V

H
RR

/3
N

O
A

A
-1

9
1,1

00
1

O
pe

n
Fe

br
ua

ry
 2

00
9

❶
❷

❶
❹

V
EG

ET
A

TI
O

N
SP

O
T-

5
1,1

50
26

U
nk

no
w

n
M

ay
 2

00
2

D
ec

em
be

r 
20

14
❶

❷
❶

❷

V
IIR

S
Su

om
i N

PP
1,6

00
16

O
pe

n
O

ct
ob

er
 2

01
1

❶
❶

❶
❶

(C
on

tin
ue

d)



104 | P A R T  I I :  E A R T H  O B S E R V A T I O N  F O R  W A T E R  R E S O U R C E S  M A N A G E M E N T

D
A

TA
 C

U
RR

EN
C

Y
 

A
N

D
 F

U
N

C
TI

O
N

A
L 

TY
PE

 O
F 

SE
N

SO
R

M
IS

SI
O

N
 

IN
ST

RU
M

EN
TS

M
IS

SI
O

N
 N

A
M

E 

(S
H

O
RT

)

SP
A

TI
A

L 

RE
SO

LU
TI

O
N

 

(M
ET

ER
S)

RE
V

IS
IT

 P
ER

IO
D

 

(D
A

Y
S)

A
C

C
ES

SI
BI

LI
TY

LA
U

N
C

H
 D

A
TE

EN
D

 D
A

TE
N

D
V

I
A

LB
ED

O
fP

A
R

LA
I

Fu
tu

re

A
ct

iv
e 

m
ic

ro
w

av
e

SA
R 

(R
C

M
)

RA
D

A
RS

A
T 

C
-1

50
12

C
on

st
ra

in
ed

20
18

❷
❹

❷
❹

SA
R 

(R
C

M
)

RA
D

A
RS

A
T 

C
-2

50
12

C
on

st
ra

in
ed

20
18

❷
❹

❷
❹

SA
R 

(R
C

M
)

RA
D

A
RS

A
T 

C
-3

50
12

C
on

st
ra

in
ed

20
18

❷
❹

❷
❹

O
pt

ic
al

LI
SS

-II
I 

(R
es

ou
rc

es
at

)
RE

SO
U

RC
ES

A
T-

2A
5.

8
26

O
pe

n
20

15
❶

❶
❷

❷

M
SI

 
(S

en
tin

el
-2

)
Se

nt
in

el
-2

 A
10

10
O

pe
n

20
15

❶
❷

❶
❷

M
SI

 
(S

en
tin

el
-2

)
Se

nt
in

el
-2

 B
10

10
O

pe
n

20
16

❶
❷

❶
❷

M
SI

 
(S

en
tin

el
-2

)
Se

nt
in

el
-2

 C
10

10
O

pe
n

20
20

❶
❷

❶
❷

LI
SS

-IV
RE

SO
U

RC
ES

A
T-

2A
23

.5
26

O
pe

n
20

15
❶

❶
❷

❷

H
IS

U
I

A
LO

S-
3

30
60

U
nk

no
w

n
20

16
❶

❶
❶

❶

A
W

iF
S

RE
SO

U
RC

ES
A

T-
2A

55
26

O
pe

n
20

15
❶

❶
❶

❶

O
LC

I
Se

nt
in

el
-3

 A
30

0
27

O
pe

n
20

15
/1

6
❶

❷
❷

❷

O
LC

I
Se

nt
in

el
-3

 B
30

0
27

O
pe

n
20

17
❶

❷
❷

❷

O
LC

I
Se

nt
in

el
-3

 C
30

0
27

O
pe

n
20

20
❶

❷
❷

❷

V
IIR

S
JP

SS
-1

1,6
00

16
O

pe
n

20
17

❶
❶

❶
❶

So
ur

ce
s: 

C
om

m
itt

ee
 o

n 
Ea

rt
h 

O
bs

er
va

tio
n 

Sa
te

lli
te

s 
(C

EO
S)

 E
ar

th
 O

bs
er

va
tio

n 
H

an
db

oo
k 

(h
tt

p:
//

w
w

w
.e

oh
an

db
oo

k.
co

m
/)

 a
nd

 t
he

 W
M

O
 O

bs
er

vi
ng

 S
ys

te
m

s 
C

ap
ab

ili
ty

 A
na

ly
si

s 
an

d 
Re

vi
ew

 T
oo

l (
ht

tp
:/

/w
w

w
.w

m
o-

sa
t.i

nf
o/

os
ca

r/
).

N
ot

e:
 N

D
V

I =
 n

or
m

al
iz

ed
 d

iff
er

en
ce

 v
eg

et
at

io
n 

in
de

x;
 fP

A
R 

= 
fr

ac
tio

n 
of

 a
bs

or
be

d 
ph

ot
os

yn
th

et
ic

al
ly

 a
ct

iv
e 

ra
di

at
io

n;
 L

A
I =

 le
af

 a
re

a 
in

de
x.

 T
he

 s
ui

ta
bi

lit
y 

of
 e

ac
h 

se
ns

or
 t

o 
pr

ov
id

e 
us

ef
ul

 d
at

a 
is

 s
ho

w
n 

w
ith

 n
um

be
rs

 a
nd

 c
ol

or
s, 

as
 fo

llo
w

s: 
❶

 h
ig

hl
y 

su
ita

bl
e,

 ❷
 s

ui
ta

bl
e,

 ❹
 n

ot
 s

ui
ta

bl
e.

Ta
bl

e 
6.

7 
(C

on
tin

ue
d)

http://www.eohandbook.com/
http://www.eohandbook.com/


C H A P T E R  6 :  E A R T H  O B S E R V A T I O N S  F O R  M O N I T O R I N G  W A T E R  R E S O U R C E S  | 105

of the main satellite programs used for vegeta-
tion sensing provide these vegetation or land 
cover maps as precalculated information prod-
ucts available for off-the-shelf use (table 6.8). 
Among these, only the MODIS Land Cover Type 
product provides dynamic annual mapping.

Vegetation height can be estimated using 
either optical photogrammetry, satellite-borne 
LiDAR (Simard et al. 2011), or synthetic aper-
ture radar (SAR; Kellndorfer et al. 2004; Weg-
muller and Werner 1997).

Vegetation biomass is the mass of live plant 
tissue. Aboveground biomass is usually esti-
mated from optical Earth observation, radar, 
LiDAR, or a combination of these, using empir-
ical conversion functions (Goetz et  al. 2009; 
Lucas et al. 2010). More recently, aboveground 
biomass has also been estimated using the veg-
etation optical depth index, which is a relative 
measure of aboveground vegetation water con-
tent derived from passive microwave remote 
sensing (Andela et al. 2013).

Example Applications
Earth observation of vegetation has an impor-
tant role to play in providing information for 
meteorological and agricultural drought 
monitoring systems, by focusing directly on 
the impact of drought on vegetation using 

productivity models, when all other parame-
ters are known with reasonable certainty. 

Vegetation litter (that is, dead vegetation) 
cover can now be detected fairly routinely 
from most of the main land-observing satellite 
platforms that have at least some SWIR capacity. 
It is, however, best detected from hyperspectral 
sensors (Guerschman et  al. 2009a). Observa-
tions of litter cover also enable estimates to be 
made of the fraction of bare soil (that is, the 
ground area not covered in vegetable matter).

Vegetation Cover Classes
Vegetation cover classes are identified using 
combinations of remotely sensed variables, often 
in conjunction with ancillary data such as cli-
mate and land use maps and field observations. 
Remotely sensed estimates of vegetation height 
from radar or Laser Imaging, Detection, and 
Ranging (LiDAR) and biomass, likewise from 
radar or LiDAR, are useful for distinguishing 
between structurally distinct types of vegetation. 

The main EO method for deriving classes of 
vegetation cover, however, is by classifying the 
temporal (seasonal) dynamics in leaf area. For 
example, when LAI has high seasonal variability, 
it is reasonable to assume that this is caused by 
short-lived vegetation that dies back (including 
crops) or by deciduous woody vegetation. Many 

Table 6.8 Examples of Global Vegetation Cover Maps

NAME SENSOR AGENCY COVER CLASSES

SPATIAL 

RESOLUTION CURRENCY SOURCE

UMD Land Cover 
Classification

AVHRR University of 
Maryland

14 1°, 8 kilometers, 
1 kilometer 

1998 Hansen et al. 2000

MODIS Land 
Cover Type 
(MCD12Q1)

MODIS Terra and 
Aqua

U.S. Geological 
Survey

17 500 meters Yearly, 2001–12 Friedl et al. 2010

ESA-GlobCover MERIS European Space 
Agency and 
Catholic University 
of Louvain

22 300 meters 2009

FROM-GLC Landsat TM and 
ETM

Tsinghua 
University

11 30 meters Gong et al. 2012

Source: CEOS 2015, OSCAR database. 

Note: AVHRR = Advanced Very High Resolution Radiometer; ESA = European Space Agency; ETM = Enhanced Thematic Mapper; FROM-GLC = Finer Resolution Observation 
and Monitoring of Global Land Cover; MERIS = Medium Resolution Imaging Spectrometer; MODIS = Moderate Resolution Imaging Spectrometer; TM = Thematic Mapper; 
UMD = University of Maryland.
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normalized difference water index, derived 
from MODIS (figure 6.10)10

• The Australian Bureau of Meteorology’s 
Climate Maps, which provide AVHRR 
NDVI maps11

• Princeton University’s African Drought 
Monitor, which uses MODIS NDVI12

• The University of Montana’s global ter-
restrial drought severity index, which uses 
the MODIS evapotranspiration and NDVI 
products.13

Actual evaporation rates can be estimated 
using the Penman-Monteith model (Monteith 
1981). As discussed in the section on evapo-
transpiration, this requires estimating a “sur-
face conductance” parameter, which is related 
primarily to vegetation characteristics. Spa-
tially explicit, temporally varying estimates of 
evapotranspiration can be made across large 
areas when the surface conductance parame-
ter is driven by using RS information to assign 
“typical” values to land cover classes or by 
using LAI or NDVI directly (Leuning et  al. 
2008; Zhang et  al. 2010). Yebra et  al. (2013) 
review the suitability of alternative MODIS 
vegetation EO data for estimating evapotrans-
piration and find that NDVI and EVI produce 
the best predictions of canopy conductance.

The majority of spatially explicit hydrologic 
models need to incorporate the role of vegeta-
tion in the water cycle and do so by including 
some vegetation-specific parameters. As with 
the estimation of evapotranspiration, the infor-
mation used may be fully dynamic and quanti-
tative (continuously varying fields of LAI, 
rooting depths, and so forth). More typically, 
though, vegetation is described as types of veg-
etation cover (with static boundaries), assign-
ing vegetation-specific characteristics to each 
type of cover. This does not require satellite 
observations for the period of analysis, which 
has obvious advantages for predicting presatel-
lite or future conditions. These characteristics 
can be scalars (that is, static) or variables (that 

time-series analysis of information on vegeta-
tion “greenness,” where the current anomaly 
in greenness is compared with the long-term 
mean value (or an alternative reference value, 
such as the same time last year). Typically, 
vegetation drought monitoring approaches 
are combined with other approaches (for an 
example, see Mu et  al. 2012). Such analyses 
are  useful for monitoring and predicting food 
shortages and for targeting investments in 
agricultural infrastructure. The following are 
some examples of current drought monitor-
ing systems that include vegetation Earth 
 observation:

• The U.S. government’s Global Drought 
Information System, which uses AVHRR 
NDVI, among several other satellite-
derived vegetation indexes9

• The European Commission’s European 
Drought Observatory, which uses fPAR, 
derived from MERIS (Medium Resolu-
tion Imaging Spectrometer), and the 

© European Drought Observatory (EDO) 2013

Source: © European Drought Observatory. Used with permission. Further permission required for 
reuse.

Note: The combined drought indicator is based on anomalies in the standard precipitation index, 
modeled soil moisture, and remotely sensed fPAR. Yellow is “watch,” where the index is anomalously 
low; orange is “warning,” where low rainfall translates into a soil moisture anomaly; red is “alert,” 
when these two conditions are accompanied by an fPAR anomaly. fPAR = fraction of absorbed 
photosynthetically active radiation.

Figure 6.10  Combined Drought Indicator for Europe, Mid-March 2014
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combined with crop phenological signatures 
(that is, timing and rates of green-up and senes-
cence) within the greenness signal to identify 
the area of land that has been irrigated within a 
given region (Conrad et al. 2011; Ozdogan et al. 
2010; Pervez and Brown 2010 for examples and 
more information).  Figure 6.12 shows a map of 
an irrigated area in the Indian Krishna basin, 
derived from MODIS imagery.

Groundwater 
Definition
Groundwater is the water contained in the 
saturated zone—the subsurface volume 
below the water table—where water fills the 
cracks and pores of rock, sediment, and soil. 
Groundwater can be recharged by rainfall, 
snowmelt, irrigation, and rivers. It dis-
charges when water resurfaces through 
springs and wells, flows into lakes, streams, 
and the ocean, or is extracted by vegetation. 
Groundwater moves at varying speeds, 
depending on the storage pressure and the 
porosity of the storage medium, among other 
things. Aquifers are subsurface layers where 

is, dynamic, for example, a prescribed seasonal 
pattern), with remotely sensed data being a 
prime source of information for the latter. 

The AWRA system (van Dijk 2010; van Dijk 
and Renzullo 2011) is used by the Australian 
Bureau of Meteorology for water resources 
assessment and accounting and is one example 
of a spatial water balance estimation model 
that uses remotely sensed vegetation informa-
tion. The landscape is divided into “tree” and 
“herbaceous” cover types (derived from 
AVHRR imagery), and each is assigned a fixed 
rooting depth but spatially and seasonally 
varying LAI (derived from MODIS imagery). 
Figure 6.11 shows an example AWRA output.

Techniques exist to use remotely sensed 
vegetation information for assessing the area of 
irrigated agriculture. Such mapping is impor-
tant, as there can be a significant difference 
between the “irrigable area” (that is, the area 
that is equipped with infrastructure for irriga-
tion) and the area actually irrigated at any given 
time. Techniques are based on the concept 
that, in semiarid and arid environments at 
least, regional time-series analysis of greenness 
(LAI, fPAR, or NDVI) can identify areas that 
are unusually green and contrast with the sur-
rounding landscape. This information may be 

Source: Bureau of Meterology (BoM) 2012. © BoM. Used with 
permission. Further permission required for reuse.

Note: AWRA = Australian Water Resources Assessment.

HOBART
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Figure 6.11  Map of AWRA-Derived Total Annual 
Landscape Water Yields in 2011–12 for Tasmania, 
Australia

Source: Gumma, Thenkabail, and Nelson 2011.

Note: Irrigated land cover types are shown in green and red. This map is derived from Moderate 
Resolution Imaging Spectrometer (MODIS) imagery 2000–01.
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Figure 6.12  Map of Irrigated Land Cover Types in the Krishna Basin, India
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When groundwater reaches the surface in an 
otherwise dry landscape, the additional water 
supply can be detected through its enhance-
ment of surface evaporation rates and vegeta-
tion productivity. Groundwater-dependent 
ecosystems are tied to this process. Areas where 
evaporation or vegetation productivity or cover 
are higher than what would be expected for the 
given precipitation can be detected using 
remotely sensed evaporation or vegetation 
cover. Details on how these two attributes can 
be remotely sensed may be found in the section 
on evapotranspiration and ground cover, and an 
example of such an analysis is provided in 
 chapter 7. An excellent resource on the use of 
Earth observation in groundwater applications 
is  Meijerink et al. (2007).

Satellite gravimetry—satellites that measure 
gravity fields—is able to detect changes in these 
fields between subsequent overpasses. With 
suitable postprocessing to remove the effects 
of phenomena such as tides and tectonic move-
ments, postglacial rebound, atmospheric com-
position, and changes in the mass or other 
features of surface water, gravimetric observa-
tions can provide information on changes in 
subsurface water mass. Currently there is one 
set of gravity measurement satellites—the 
GRACE mission by NASA and the German 
Aerospace Centre, which was launched in 
2002 (Tapley et  al. 2004). This satellite mis-
sion is currently operating seven years beyond 
its intended five-year lifetime, and the quality 
of its observations is slowly degrading. A 
follow-on GRACE mission is planned for 2017. 

GRACE’s coarse spatial resolution (about 
400 kilometers) means that it can be used only 
for large, basin-scale applications. Nonethe-
less, its unique ability to monitor integrated 
changes in water storage everywhere makes it 
a valuable sensor. Several reviews have been 
conducted of the application of GRACE to 
assess water storage (Güntner 2008; Ramillien, 
Famiglietti, and Wahr 2008; Syed et al. 2008) 
and groundwater depletion (Leblanc et  al. 
2009; Rodell, Velicogna, and Famiglietti 2009). 

groundwater is confined, sometimes under 
pressure, by adjacent rock and clay layers of 
low permeability.

Relevance 
Groundwater is a critical source of water for 
human consumption and agriculture, especially 
where surface water is scarce or polluted. It also 
moderates streamflow, producing the longer-
term baseflow component of total flows, which 
decouples flows somewhat from the variability 
inherent in the climatic drivers of streamflow. 
The two greatest risks to groundwater supplies 
are overextraction and pollution.

Approximately 43 percent of all irrigated 
agriculture depends on groundwater (Siebert 
et  al. 2010), and this proportion is rising 
 rapidly—often resulting in unsustainable 
extraction rates (Gleeson et  al. 2012; Wada 
et al. 2010; Wada, van Beek, and Bierkens 2012). 
Groundwater is also a major source of drinking 
water, with, for example, 51 percent of the U.S. 
population relying on groundwater.14 Ground-
water is the primary source of water in the 
Middle East and Northern Africa (where fossil 
groundwater reserves are used) and in coun-
tries such as Denmark, Jamaica, Portugal, and 
Slovakia with high-yielding sources, often in 
limestone or “karst” aquifers (FAO 2013). 

Remote Sensing of Groundwater
As groundwater lies below the land surface, 
there are currently no EO techniques for direct 
observation of groundwater level. The main 
indirect techniques are through satellite grav-
ity field mapping (gravimetry) and radar inter-
ferometry (table 6.9). The former measures 
changes in the regional gravity field, while the 
latter measures changes in land surface eleva-
tion. Both techniques assume that there is a 
relationship between changes in gravity fields 
or surface elevations, respectively, and changes 
in groundwater storage.

In water-limited landscapes, changes in shal-
low groundwater may also be inferred by exam-
ining the effects on other surface processes. 
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Second, the use of RS observations to provide 
management-relevant groundwater information 
is still in the development stage—it has not yet 
reached a stage of maturity, where the data prod-
ucts are generated routinely or operationally or 
where the product has been widely tested and 
accepted by the scientific and practitioner 
communities. 

Lastly, while the GRACE-derived gravimet-
ric data provide new and potentially valuable 
insights into groundwater-related processes, the 
data are of exceptionally coarse resolution and 
generally restricted to large, basin-scale applica-
tions of no finer than 300-kilometer resolution.

Surface Water 
Definition
Because of its particular relevance for water 
assessment and water cycle studies, surface 
water is treated separately from other types of 
land cover. Water bodies can vary greatly in 
size and duration. This section focuses on the 
following: 

• Natural or man-made reservoirs, which 
can range from water bodies such as small 
ponds of a few square meters to large lakes 
of several thousands of square kilometers. 
Generally, these water bodies change in 
area and volume relatively slowly in time 
(that is, in a matter of weeks to months). 

• Surface water due to flooding, which can 
range from small overbank floods near 
water streams to very large floods covering 
hundreds of square kilometers. In general 
terms, floods are more dynamic in time 
than reservoirs and can change in area and 
volume in a matter of hours or days. 

Relevance
Monitoring surface water areas is relevant to 
applications linked to agriculture, urban 
water use, and flood mitigation. Surface 
water may be used for irrigation as well as 
for human or animal consumption in both 
rural and urban areas. Many ecosystems, 

Recently, GRACE observations were used 
along with ocean, lake, and river water level 
altimetry to constrain fully spatial estimates of 
the water balance for the globe at 100-kilometer 
resolution (van Dijk et al. 2013).

Satellite radar interferometry allows mea-
surements of very small changes in soil surface 
elevation that can help to detect changes in 
groundwater storage. The technique relies on 
the change in the distance between the satel-
lite and a given location on the Earth’s surface 
between successive satellite overpasses. These 
changes can be measured very accurately (to 
less than 1 centimeter) using SAR instruments.

Becker (2006) and Galloway and Hoffmann 
(2007) provide reviews of different applica-
tions of interferometry to groundwater charac-
terization and monitoring and demonstrate 
interferometry’s utility for supporting ground-
water management directly or by improving 
the ability to model groundwater. SAR can be 
used to monitor seasonal and long-term 
changes in groundwater storage, provided the 
relationship between vertical surface move-
ment and groundwater storage, known as 
Terzhagi’s Principle, can be quantified. Changes 
in vertical surface movement must be inter-
preted carefully and regionally, as there may 
be many context-specific considerations—
such as whether the local geological materials 
deform at all in response to changes in 
groundwater mass and whether there is much 
interference from local vegetation.

Limitations
By its nature, groundwater cannot be observed 
directly using Earth observation, so the use of 
remote sensing here is inferential and has limi-
tations. First, RS observations can provide 
information on groundwater levels or recharge 
and discharge rates only when combined with 
other sources of observations—both RS and 
field data. This entails the use of models, where 
the actual data product (levels or recharge and 
discharge rates) is a modeled variable derived 
from an array of inputs.



C H A P T E R  6 :  E A R T H  O B S E R V A T I O N S  F O R  M O N I T O R I N G  W A T E R  R E S O U R C E S  | 111

discrimination of water from soil and  vegeta-
tion more problematic (although these same 
properties can be exploited for deriving water 
quality parameters, as discussed in the section 
on optical water quality). In the SWIR region 
(about 900–2,500 nanometers), water quality 
does not interfere, and any water body will 
reflect very low amounts of radiation. 

One major disadvantage of using optical 
imagery is that the images are subject to cloud 
contamination. This is particularly problem-
atic in tropical regions during the monsoon 
season, when cloud-free imagery may be rare. 
In addition, optical sensors are poorly suited to 
detecting water under dense canopies, such as 
in the Amazon or Congo basins, where much 
of the floodplains may be located in inundated 
forests (Mayaux et al. 2002; Mertes et al. 1995). 

Many algorithms exist for mapping surface 
water areas. These include the use of simple 
threshold values in a spectral band (Overton 
2005; Powell, Letcher, and Croke 2008), com-
binations of two bands such as the normalized 
difference water or vegetation indexes (Brak-
enridge and Anderson 2006; Sakamoto et  al. 
2007), and, in some cases, ancillary variables to 
improve the detection of water in the presence 
of topographic shading effects (Guerschman 
et al. 2011; Ordoyne and Friedl 2008). 

Radar and passive microwave imagery are 
(by very good approximation) not affected by 
clouds or water vapor and therefore can pro-
vide useful information on surface water under 
clouds. In addition, radar is better suited than 
optical sensors for detecting water under 
dense canopies (Rosenqvist et al. 2002). 

The backscatter coefficient15 of smooth open 
water bodies is low, which allows discrimina-
tion of water from land using radar. However, 
SAR is susceptible to wind-induced waves, 
which increase scattering back to the sensor, 
creating difficulties for detecting surface water 
(Smith and Alsdorf 1998). Complications also 
arise when there is vegetation above the water 
surface. This dramatically increases backscatter 
and can create uncertainties in automated 

such as wetlands, depend on regular flood-
ing, and their health can be compromised if 
too much surface water is diverted to other 
uses. 

Earth observation can be used for estimat-
ing the area of such reservoirs and floods. The 
reservoir size that satellite sensors can mea-
sure depends on the spatial resolution and the 
area-to-perimeter ratio of the reservoir. Esti-
mating the total volume of water available in 
reservoirs requires making assumptions about 
the depth of such areas, based on local bathym-
etry measurements, although in some cases 
radar or LiDAR altimetry can also be used to 
track water levels. 

Monitoring flooding events with remote 
sensing involves the same physical principles 
as monitoring water in reservoirs. However, 
the main difference is that, generally, flood 
events are more dynamic in time and therefore 
require the use of imagery acquired with high 
temporal repetition and, even more critical, 
not prone to cloud obscuring. 

Measuring surface water elevation can pro-
vide estimates of changes in the total volume of 
water in reservoirs and wetlands and river dis-
charge, although this is currently only possible in 
wide rivers (that is, several hundreds of meters). 

Theoretical Basis for Remote Sensing 
of Surface Water: Estimating Area and 
Water Level 
There are two principal ways to estimate area: 
optical imaging and radar and passive micro-
wave imaging.

The main optical characteristic of water is 
that it absorbs most of the incoming solar radia-
tion in the visible and infrared regions and 
therefore reflects less radiation than other 
landscapes. This characteristic has been 
exploited since the mid-1970s (Rango and 
Anderson 1974; Rango and Salomonson 1974). 
In the VIS-NIR wavelengths (about 400–900 
nanometers), sediments, chlorophyll, and other 
elements affecting water quality can modify the 
spectral signal and, in some cases, make the 
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and driven by a series of constraints. For exam-
ple, for measuring water in reservoirs, spatial 
resolution is usually the most important factor, 
so high- or very high-resolution sensors—
either optical or radar—are more suitable than 
medium-resolution sensors. As mentioned, 
optical sensors are subject to clouds, but cur-
rent high-resolution radar needs to be tasked. 
For water in floods (generally larger in area 
than reservoirs and more rapidly changing 
over time), timely acquisition is more valuable, 
so medium-spatial-resolution optical and radar 
sensors may be considered more suitable. 

Most optical sensors can be used to map 
surface water. Sensors that include bands in 
the SWIR are the best suited to the task, as 
water bodies unambiguously absorb most of 
the radiation on those wavelengths. Examples 
of such sensors include MODIS, Landsat, and 
VIIRS. Optical sensors with bands only in the 
VIS-NIR can also be used to map surface water, 
although they are less suitable for differentiat-
ing water from other types of land cover such 
as wet or dry soil, particularly when the water 
contains many suspended sediments or chlo-
rophyll. Examples of such sensors include 
AVHRR, QuickBird, and IKONOS. 

All of these sensors generally have a trade-
off between spatial and temporal resolution. 
Landsat and MODIS, for example, have a simi-
lar spectral ability to identify surface water, but 
while Landsat is able to do so at high spatial 
resolution (30-meter pixels), MODIS does so at 
medium resolution (250- or 500-meter pixels, 
depending on the bands used; see  figure 6.13). 
At the same time, MODIS can capture about 
two images of the same area per day (depend-
ing on the latitude) from the Terra and Aqua 
satellites, whereas Landsat revisits each site 
every 16 days. These differences need to be 
considered when assessing the ability of each 
sensor to monitor surface water area. 

The spatial resolution and cloud-
penetrating ability of radar makes it particu-
larly useful for mapping the extent of surface 
water during flood events. However, such 
acquisitions need to be tasked, making 

 mapping. Interferometric coherence from mul-
titemporal observations is another alternative 
to delineate surface water accurately, for exam-
ple, from the ERS-1, ERS-2 tandem mission. 

Water bodies have significantly lower bright-
ness temperatures than their surroundings, and 
the emissivity polarization difference is gener-
ally large, which makes it feasible to detect 
water bodies with microwave measurements 
(De Jeu 2003). Possibly the greatest disadvan-
tage of passive microwave sensors is their 
coarse resolution, which has hampered their 
adoption for environmental monitoring. Single 
“pixel” calibration against field discharge mea-
surements has been used for monitoring dis-
charge during (relatively large) flood events, 
however. 

Several types of active sensors, including 
laser, profiling radar, interferometric SAR, and 
swath radar, are able to characterize water 
 levels. Laser systems emit a pulse of light (nor-
mally VIS or NIR) and measure the time that 
the echo takes to return to the sensor. Radar 
altimeters work on a similar principle. Inter-
ferometric SAR uses multiple images to esti-
mate changes in elevation (and in terrain). 
These techniques have been used to measure 
ocean levels since the early 1990s. Over land, 
the accuracy of the level measurements 
depends on the size of the water bodies being 
measured; over rivers, surfaces are about 
10 centimeters at best and more typically about 
50 centimeters. With increased averaging over 
large lakes (more than 100 square kilometers), 
accuracy improves to 3–4 centimeters (Alsdorf, 
Rodríguez, and Lettenmaier 2007). This makes 
satellite altimetry suitable for monitoring large 
water bodies, particularly in remote areas 
where field-based gauging is not available.

Sensors for Surface Water Remote Sensing 
Table 6.10 provides a list of existing and 
planned sensors that can produce data for esti-
mating the area and height of surface water. 
The classification of the suitability of each sen-
sor for mapping water area and water height in 
reservoirs and floods is somewhat subjective 
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can only be measured when and where it is 
sufficiently covered by the tracks.

A most promising future development is the 
Surface Water and Ocean Topography Mis-
sion, which is scheduled for launch in 2020. It 
will include a radar altimeter, an interferome-
ter (Ka-Band Radar Interferometer [KaRIN]), 
and a microwave radiometer (Rodríguez and 
Estéban-Fernández 2010). 

Applications
This section highlights some notable examples 
of research applications. Hess (2003) uses Japa-
nese Earth Resources Satellite 1 SAR data to 
map inundation in the Amazon basin during the 
high- and low-water seasons at 100-meter reso-
lution. Papa et  al. (2010) combine passive 
(SSM/I) and active (ERS) microwave with opti-
cal (AVHRR) imagery to describe the global pat-
terns of surface water extent from 1993 to 2004. 
Papa et al. (2010) develop a technique to com-
bine these disparate data sources, which over-
lap only partially in time, to intercalibrate the 
surface water estimates. They report a slight 
decrease in the global inundated area for the 
period analyzed, mainly in the tropics. 

In an example application, CSIRO com-
bined Landsat- and MODIS-based mapping 
with flow measurements to produce the 
Murray-Darling basin floodplain inundation 
model (Overton et  al. 2011). This model pro-
vides a regional-scale model of the spatial 
extent of floodplain inundation under ecologi-
cally significant flood return periods. The 
model was developed using the flow scenarios 
modeled under the Murray-Darling Basin Sus-
tainable Yields Project (see appendix B), allow-
ing mapping under different climate and 
development scenarios.

Several data services provide flooding or 
lake and reservoir levels in near real time, 
including the following: 

• The Dartmouth Flood Observatory16 

• The Near-Real-Time Global MODIS Flood 
Mapping 17

existing radar sensors impractical for routine 
global monitoring at high resolution (less 
than 100 meters). So far, the highest resolu-
tion available for radar in routine mode for 
part of the globe is about 1 kilometer (ASAR 
global monitoring [GM]). The C-band Syn-
thetic Aperture Radar (C-SAR) instrument on 
board the Recently launched Sentinel-1 mis-
sion is intended to improve that to global cov-
erage at 5-by-20-meter resolution in the 
ScanSAR-Interferometric wide-swath mode. 

Lake and reservoir altimetry is normally 
obtained using the radar altimetry instru-
ments on the Jason (1 and 2), TOPEX (Ocean 
Topography Experiment)/Poseidon, and 
ERS-2 satellites. The Ice, Clouds, and Eleva-
tion Satellite (ICESat) provided useful LiDAR 
measurements with accuracies of 3 centime-
ters over footprints of 70 meters, but an instru-
ment failed after launch, and the satellite is 
inactive. An ICESat-2 is planned for launch in 
2016. A general disadvantage of altimetry is 
that it does not provide full coverage but 
instead measures along the orbit track, which 
means that the height of surface water level 

a. Landsat imagery b. MODIS imagery

Source: Adapted from Guerschman et al. 2011; WIRADA 2012. © CSIRO. 
Used with permission. Further permission required for reuse. © 
WIRADA. Used with permission. Further permission required for reuse.

Note: On the left, Landsat imagery and, on the right, Moderate 
Resolution Imaging Spectrometer (MODIS) imagery. Top-row figures 
show the surface reflectance in false color; bottom-row figures show 
an object-oriented classification of surface water in red (bottom left) 
and the open water likelihood index as an estimate of the fraction of 
the pixel covered with water (bottom right).

Figure 6.13  Example of Satellite Imagery Captured 
during Flood Event in Northern New South Wales, 
Australia
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also a source of floodwater. Apart from the natu-
ral, seasonal cycle of flooding associated with 
spring snowmelt, snow can also be a source of 
severe flooding when unusually warm condi-
tions occur prior to or during the normal spring 
melt. Both the temperature and liquid water 
content of snow (snow wetness) are good indi-
cators of how close the snowpack is to melting 
and therefore are important for forecasting 
floods, along with measures of snow extent and 
depth or snow water equivalent.

Remote Sensing of Snow 
In the visible wavelengths, snow is generally 
highly reflective (that is, has a high albedo), 
which makes it relatively easy to detect, as it 
contrasts with the surrounding landscape. In 
thermal infrared wavelengths, it also possesses 
easily recognizable features, often being colder 
than its surroundings and therefore emitting 
less radiation in these wavelengths. Snow 
cover also affects the microwave radiation 
emitted from the Earth. It alters the attenua-
tion of microwaves, and analysis of the attenu-
ation patterns can reveal important details 
about the depth, composition (that is, the solid 
and liquid fractions), and structure of the snow 
pack. This attenuation can be measured using 
passive microwave sensors, which detect 
microwaves emitted from the Earth’s surface 
after passing through the overlying snow pack, 
or using active microwave sensors (typically 
SAR), which detect the backscatter of sensor-
emitted microwave radiation.

The reliability of remotely sensed, snow-
related information decreases as cloud cover, 
tree or forest cover, and terrain complexity 
increase. Low sun illumination angles, typical of 
the higher northern latitudes, reduce the qual-
ity of remotely sensed information. Frei et  al. 
(2012) provide a useful overview of remotely 
sensed snow products. Table 6.11 outlines the 
most prominent remote sensors relevant to 
measuring snow (cover) extent, snow moisture, 
and snow water equivalent. Both current and 
expected future sources are listed. The 

• Crop Explorer18 

• LEGOS HydroWeb19 

• The European Space Agency’s River & 
Lake.20 

Some of these examples are discussed fur-
ther in appendix B. 

Snow
Definition
Snow cover exists where the accumulation of 
snow is sufficient for the land surface to have a 
reasonably continuous layer of snow. The accu-
mulation and melting of snow cover provide an 
important supply of freshwater across many 
mountainous and high-latitude (mainly north-
ern hemisphere) regions. Outside of the areas 
permanently covered with snow, snow cover 
provides a supply of water only in the spring and 
summer. Important attributes of snow cover are 
its areal extent, thickness, and water content. 
The electromagnetic and structural properties 
of snow are of particular importance in this con-
text as their unique characteristics allow for 
remote sensing of their extent, depth, and mass. 

Since the same mass of water can take up dif-
ferent volumes when frozen (depending on its 
structure as snow or ice), it is useful to describe 
snow in terms of snow water equivalent—the 
mass or depth of water obtained when a certain 
volume of snow is melted. While glaciers and 
other terrestrial ice bodies provide important 
sources of freshwater, the remote sensing of ice 
bodies is not covered in this review. For an 
excellent overview of the remote sensing of 
both snow cover and glaciers, see Rees (2006).

Relevance 
As snow contains freshwater, meltwater from 
snow cover provides an important source of 
water for consumption, irrigation, and power 
generation in many parts of the globe. As a 
source of water, it is highly seasonal, so surface 
impoundments are often constructed to capture 
and store meltwater across seasons. Snow is 
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provided on a daily, weekly, and monthly 
basis for the Northern Hemisphere. This 
information product first became available 
in 1979 and still exists today (Pulliainen 
2006; Takala et  al. 2011). The NSIDC pro-
duces an AMSR-E-based product for the 
world at 25-kilometer resolution that starts 
in mid-2002 (Kelly et  al. 2003). A snow-
depth product for China has been generated 
by the Environmental and Ecological Sci-
ence Data Center for West China. This is a 
25-kilometer resolution product spanning 
1978 to 2006 that is derived from passive 
microwave data (SMMR and SMM/I; see 
Che et al. 2008). More current snow depth, 
extent, and snow water equivalent data 
products have recently been developed for 
northern China (Dai et al. 2012).

Optical Water Quality and Macrophytes 
Definition
For practical purposes, “inland waters” are 
defined as inland surface waters, including 
rivers, lakes, artificial reservoirs, and estuar-
ies and their associated wetlands. “Water 
quality” refers to the physical, chemical, and 
biological content of water and may vary 
geographically and seasonally, irrespective 
of the presence of specific pollution sources. 
Many factors affect water quality. No single 
measure exists for good water quality. There-
fore, the term “water quality” does not 
describe an absolute condition but rather a 
condition relative to the use or purpose of 
the water (for example, for drinking, irriga-
tion, industrial, recreational, or environmen-
tal purposes). Water that is suitable for 
irrigation, for instance, may not meet drink-
ing water standards. Thus “water quality” 
refers to the natural state of water bodies and 
to their response to a combination of stress-
ors such as changes in land use; nutrient 
inputs; contamination from farming prac-
tices, industrial activity, and urbanization; 
and changes in hydrology, flow regimes, and 
climate.

University of Utah and the University of Califor-
nia, Santa Barbara, have generated a MODIS-
based snow cover product specifically for use in 
areas with complex terrain (Painter et al. 2009).

SNOW EXTENT 

The areal extent of snow cover can be detected 
using optical, near infrared, and microwave 
sensors or a combination of these. Operational 
snow cover maps are currently produced with 
MODIS and AVHRR imagery using visible and 
infrared sensors. The strength of visible and 
infrared sensors is their relative abundance 
and ease of access. They are, however, sensitive 
to cloud cover, which can be common at high 
altitudes or in environments with significant 
snow cover.

Various snow extent products are available. 
The two most widely used infrared- and NIR-
based products are the MODIS product suites 
and the ice mapping system (IMS). The 
MOD10 suite of products provides daily, eight-
day, and monthly estimates of global snow 
cover at 500-meter and 0.05° resolutions (see 
Hall et al. 2002, 2010; Salomonson and Appel 
2004). The National Snow and Ice Data Center 
produces the interactive multisensor snow and 
ice mapping data product. This is a daily prod-
uct for the Northern Hemisphere at 4-kilome-
ter and 24-kilometer resolutions (Helfrich 
et al. 2007; Ramsay 1998).

SNOW WATER EQUIVALENT 

Active and passive microwave sensors are 
the primary means of detecting snow depth, 
snow water equivalent, and snow wetness. 
The great advantage of microwave sensors is 
that they are not sensitive to cloud cover and 
can detect more than snow extent alone. 
Their disadvantages are that they are sensi-
tive to the presence of trees and, in the case 
of passive sensors, have relatively low spatial 
resolutions. Dietz et  al. (2011) provide an 
excellent review of microwave-based meth-
ods for detecting snow. 

The ESA produces the GlobSnow snow 
water equivalent data product, which is 
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amount of light through the water column 
to above the surface.

Earth observation cannot directly assess 
water quality parameters that do not have a 
direct expression in the optical response of 
the water body. These parameters include 
many chemical compounds such as nutri-
ents. However, in some cases, nonoptical 
products may be estimated through infer-
ence, proxy relationships, or data assimila-
tion with remotely sensed optical properties 
of products such as nitrogen, phosphate, 
organic and inorganic micropollutants, and 
dissolved oxygen. However, these relation-
ships are stochastic, may not be causal, and 
may have a limited range of validity. By mak-
ing use of the combined information in 
directly measurable optical properties, it is 
possible to derive information about eutro-
phication, environmental flows, and carbon 
and primary productivity. 

Relevance
Access to clean, safe drinking water is a key 
determinant of quality of life and is linked 
directly to human health. Depending on the 
use to which the water is put, polluted or con-
taminated water may not be regarded as a 
usable resource. Similarly, as contaminant con-
centration is often related to water volume and 
flow, water quality is ultimately linked to water 
quantity. Water supply and sanitation are thus 
essential components of any integrated 
approach to malnutrition and poverty reduc-
tion, and water quality is a key related chal-
lenge in sustainable development.

The quality of water is affected by stressors 
including urbanization, population growth, 
land use change, deforestation, farming,  
overexploitation, and contamination from 
extractive industries in the mining and energy 
sectors. As such, the relevance of water qual-
ity issues will change in different settings, and 
their impact will ultimately depend on the 
water’s intended use.

Remote Sensing of Water Quality
Earth observation can only be used directly to 
assess a subset of water quality variables, often 
referred to as optical water quality variables, 
including concentrations of the following:

• Chlorophyll (milligrams per cubic meter), 
which is an indicator of phytoplankton 
biomass, trophic, and nutrient status and 
the most widely used index of water qual-
ity and nutrient status globally

• Cyanophycocyanin (milligrams per cubic 
meter) and cyanophycoerythrin (milli-
grams per cubic meter), which are indica-
tors of cyanobacterial biomass common in 
harmful and toxic algal blooms

• Colored dissolved organic matter (per 
meter absorption at 440 nanometers), 
which is the optically measurable com-
ponent of dissolved organic matter in the 
water column, sometimes used as an indi-
cator of organic matter and aquatic carbon

• Total suspended matter (milligrams per 
cubic meter) and nonalgal particulate 
matter, which are important for assess-
ing the quality of drinking water and con-
trolling the light characteristic of aquatic 
environments.

Additionally, the following conditions can 
be estimated:

• Vertical light attenuation (per meter) and 
turbidity, which measure the underwater 
light field and are important for assessing 
the degree of light limitation, rates of pri-
mary production, species composition, and 
other ecosystem responses

• Emergent and submerged macrophytes 
down to depth visibility, which are impor-
tant indicators of wetland and aquatic eco-
system health and function

• Bathymetry (meters), which can estimate 
water depth when the bottom or bottom 
cover of a water body reflects a measurable 
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trends in water quality for several decades and 
to develop suitable reports to address specific 
questions raised by decision and policy makers.

Theoretical Basis for Remote Sensing of 
Inland Water Quality
Earth observation of the water quality param-
eters identified above is achieved through opti-
cal means principally in the VIS-NIR spectrum 
(about 400–900 nanometers). The light reach-
ing the surface of a water body consists of 
direct sunlight and diffuse skylight after scat-
tering and absorption have interacted in the 
atmosphere (figure 6.14). At the surface, this 
light is either reflected by the surface or 
refracted as it passes across the air-water inter-
face. Within the water column, the water itself 
and different particulate and dissolved water 
column constituents transform the light by 
transmitting, absorbing, or scattering the 
down-welling light. Of the light that is scat-
tered, a proportion may be backscattered in an 
upward direction and pass across the water-air 
interface at the right angle to be observed by 
airborne or satellite sensors once it has again 
passed through the atmosphere. 

In the visible region (about 400–900 nano-
meters), the influence of sediments, chloro-
phyll, and colored dissolved organic matter 
interacts to modify the shape and amount of 
the spectrally reflected signal (Kirk 2011); RS 
water quality algorithms largely take advan-
tage of these variations in the “shape” of spec-
tral reflectance. In wavelengths longer than 
900 nanometers, water itself is such a strong 
absorber that very little radiation is reflected 
from water bodies (figure 6.15). For this reason, 
the water quality variables listed above are 
often referred to as “optical water quality 
variables.” 

The algorithms for translating the mea-
sured spectral reflectance from a water body 
to water quality variables include empirical 
approaches (Tyler et  al. 2006; Wang et  al. 
2009); semi-empirical approaches (Gons 
1999; Härmä et  al. 2001); and physics-based, 

Water quality monitoring is a key source of 
information for ensuring that both human and 
ecosystem health are not compromised and 
for determining the water’s suitability for 
other purposes (irrigation, industry). Nation-
states require information on water quality to 
inform key policy and legislative requirements 
that may include assessments against water 
quality guidelines and targets, national 
water  quality management strategies, water 
resources assessments, state of the environ-
ment reporting, and strategies formulating 
adaptive responses to climate change. How-
ever, even developed countries (such as Aus-
tralia and the United States) may not have any 
nationally coordinated water quality monitor-
ing programs, and the authorities may instead 
rely on individual states to provide such infor-
mation; moreover, frameworks for disseminat-
ing such information are often lacking 
altogether or poorly developed (Dekker and 
Hestir 2012).

Despite international efforts to monitor 
global inland water quality, existing data are 
scarce and declining, have poor geographic and 
temporal coverage, may lack quality assurance 
and control, and may be of questionable accu-
racy (Srebotnjak et al. 2012). The international 
coordinating group, the Group on Earth Obser-
vations (GEO), recognizes the value of Earth 
observation for improving understanding of 
global water quality, its hotspots, and trends; 
for ensuring food and energy security; for facil-
itating poverty reduction; for protecting the 
health of humans and ecosystems; and for 
maintaining biodiversity. GEO has formed the 
Inland and Near-Coastal Water Quality 
Remote Sensing Working Group to promote 
the development of improved optical water 
quality products (GEO 2011).

Through the provision of synoptic, consis-
tent, and comparable data, Earth observation 
has the opportunity to overcome some of the 
gaps and deficiencies in current, field-based 
water quality monitoring efforts. Sufficient 
archives of EO data now exist to monitor global 
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semi-analytical spectral inversion methods 
(Brando et  al. 2012; Lee et  al. 1998). These 
three methods are outlined below and subse-
quently compared with regard to their need 
for field measurements as well as their reli-
ability, accuracy, maturity, and complexity 
(see  chapter 7).

Empirical approaches statistically relate 
field samples of the optical water quality vari-
ables to radiance or reflectance values mea-
sured by a satellite or airborne sensor. There is 
no need to understand the underlying physical 
relationships in such algorithms (such as 
atmospheric and underwater light processes). 
However, they do require coincident field mea-
surements to calibrate the relationships for 
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Figure 6.14  Schematic of the Light Interactions That Drive Optical EO Involving the Air, Water, and Substrate
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show improved accuracy for estimating water 
column composition (Dekker, Vos, and Peters 
2001), are capable of assessing the error in the 
estimation of water quality constituents, are 
repeatable over time and space, are transfer-
able to new water bodies and other sensors, 
and can be applied retrospectively to image 
archives (Dekker et  al. 2006; Odermatt et  al. 
2012). This means that retrospective monitor-
ing of changes in optical water quality is possi-
ble to assess the impacts and mitigation of 
various stressors to the system.

A recommended pathway for longer-term 
operational use is to develop a robust, semi-
analytical inversion method for application 
globally. Semi-empirical methods can be used 
in the interim, as they often are reasonably 
robust for a category of water types and for a 
single EO sensor system. Empirical approaches 
are only useful as proof of concept. In general, 
they are not recommended if all optically 
active substances (chlorophyll, colored dis-
solved organic matter, total suspended solids, 
cyanophycocyanin, cyanophycoerythrin and 
the resulting physical properties of turbidity, 
Secchi disk depth, and vertical light attenua-
tion) need to be determined.

Mapping Inland Aquatic Macrophytes
Table 6.12 highlights the abilities of current 
and future optical sensors to differentiate 
among the growth habits of different macro-
phytes. In addition to providing valuable habi-
tat to multiple freshwater ecosystem species, 
emergent wetland vegetation has extremely 
high rates of net primary production and 
evapotranspiration, drives a large portion of 
wetland carbon formation and storage, and 
plays an important role in wetland sediment 
stability and accretion (Byrd et al. 2014; Zhou 
and Zhou 2009). Floating and submersed 
plants provide important structuring for fresh-
water ecosystems, influencing the physical and 
chemical environment and food web (Liu et al. 
2013; Meerhoff et al. 2003; Santos, Anderson, 
and Ustin 2011; Vanderstukken et al. 2014). 

specific water bodies and, as such, struggle 
when water column constituents lie outside 
the range on which the pertinent statistical 
relationship is based (in both space and time) 
and are not easily adapted to new satellite sen-
sors. Empirical methods are also less reliable 
when undertaking retrospective monitoring, 
especially when the characteristics of lake 
water quality may change and end up outside 
the range of those on which the empirical rela-
tionship is based. 

Semi-empirical algorithms improve over 
pure empirical approaches by choosing the most 
appropriate single or spectral band combination 
to estimate the water column constituent. They 
can also partly annul some of the atmospheric 
and water surface effects. Semi-empirical algo-
rithms, however, also suffer from extrapolation 
errors beyond the range of constituents 
observed, the need to establish new, semi-
empirical algorithms when switching  sensors or 
water bodies, and the lack of reliability in retro-
spective monitoring when characteristics of 
lake water quality change. They are therefore 
less accurate than fully empirical methods. 

The water quality variables retrieved using 
empirical and semi-empirical algorithms 
include total suspended matter, suspended 
inorganic matter, colored dissolved organic 
matter, turbidity, transparency, chlorophyll, 
and cyanophycocyanin pigments (Matthews 
2011). With few exceptions (such as Minnesota 
lakes in the United States; Olmanson, Brezonik, 
and Bauer 2011), neither approach offers sig-
nificant confidence for application in a national 
monitoring system (Dekker and Hestir 2012). 
The Minnesota lakes method worked because 
it was supported by a vast, citizens’ science-
based field measurement effort.

Semi-analytical inversion algorithms are 
built around knowledge of the underlying 
physics of light transfer in waters and use the 
inversion of predictions of light reflecting from 
a water body, generated by forward radiative 
transfer models, to estimate key water quality 
constituents simultaneously. Such approaches 
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Common SAR wavelength bands include X 
(3-centimeter wavelength), C (5.6-centimeter), 
S (10-centimeter), L (23-centimeter), and 
P  (75-centimeter) bands, and common SAR 
detectors may be set up to receive defined 
polarizations in the same (horizontal transmit 
and horizontal receive [HH] or vertical trans-
mit and vertical receive [VV]) or cross-polar-
ization modes (horizontal transmit and vertical 
receive [HV] or vertical transmit and horizon-
tal receive [VH]). Longer microwave wave-
lengths (L band) penetrate further into 
canopies, and differences in polarization 
behavior may also help to detect differences in 
specific vegetation canopy (Martínez and Le 
Toan 2007). 

The intensity of the radar backscatter is 
related directly to the roughness and, com-
bined with volumetric scattering, wavelength, 
and polarization, provides specific vegetation 
responses and hence information on canopy 
characteristics (Evans et  al. 2010; Kasischke 
and Bruhwiler 2003; Klemas 2013). Common 
satellite-borne SAR systems, as well as their 
characteristics and abilities to differentiate 
emergent vegetation, are highlighted in 
table  6.12. However, because wetlands are 
highly spatially heterogeneous, the large foot-
print provided by most SAR systems also limits 
their ability to discriminate wetland plant spe-
cies successfully from space. 

Applications
Systematic examples of truly operational mon-
itoring of inland water quality beyond that 
applied to single water bodies are lacking, 
reflecting the challenges in applying more sim-
ple empirical and semi-empirical algorithms. 
Using empirical methods, Olmanson, Bauer, 
and Brezonik (2008) compiled a comprehen-
sive water clarity database assembled from 
Landsat imagery over 1985–2005 for more 
than 10,500 Minnesota lakes larger than 
8  hectares in surface area. This study high-
lighted the geographic patterns in clarity 
linked to land use at the level of both individual 
lake and eco-region.21 

Routine mapping of the biophysical 
parameters of macrophytes—derived from 
high-resolution optical satellite or airborne 
imagery in lakes and shallow, lentic environ-
ments—has value for assessing cover and the 
effectiveness of management practices in 
controlling excessive aquatic plant growth. 
Macrophytes may be separated into three 
groups, based on their principal growth hab-
its—submersed, floating-leaved, and emer-
gent—and the mapping of species by growth 
habit using both airborne and satellite data 
can be reasonably accurate (Hunter et  al. 
2010; Malthus and George 1997; Tian et  al. 
2010). The mapping is done largely on the 
basis of reflectance values in NIR wavebands, 
which are much stronger from emergent and 
floating-leaved species. Hyperspectral data 
can differentiate several aquatic plant asso-
ciations (Tian et  al. 2010) and be used to 
detect submersed aquatic species, even in 
highly turbid environments (Hestir et  al. 
2008; Santos et  al. 2012), as can the use of 
LiDAR and textural analysis of image data 
(Proctor, He, and Robinson 2013; Verrelst 
et al. 2009). Differentiation of species, how-
ever, currently poses a greater challenge. 
Because of the high spatial and phenological 
variability of aquatic macrophytes, high-
spectral-resolution data are needed to dis-
criminate communities adequately (Klemas 
2013) and measure the biogeochemical fea-
tures needed for species discrimination and 
physiological function (Santos et  al. 2012; 
Ustin et al. 2004).

SAR data also have value in offering 
weather-independent monitoring of aquatic 
macrophytes and wetlands as well as flooding 
extent (Silva et al. 2008). Dielectric signal dif-
ferences arise from the presence of water as 
surface water and within vegetation, thus mak-
ing it possible to detect dry and flooded vegeta-
tion and, hence, to map the extent of flooding 
and of emergent vegetation (Costa 2004; Evans 
et al. 2010). The lack of penetration of micro-
waves into water prevents detection of sub-
mersed macrophyte species. 
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quality. In improving the design of such assess-
ments, the following are key considerations:

• Temporal sampling to represent the dynam-
ics of water quality and the range of condi-
tions that can occur over diurnal, seasonal, 
and annual cycles (droughts and flood-
ing) as well as to develop a time series for 
trend analysis. Retrospective process-
ing of satellite images, with archives dat-
ing back to the mid-1980s, may also reveal 
temporal changes, trends, and anomalies 
across inland water and near-coastal water 
systems.

• Spatial sampling to represent water bodies 
under consideration and provide under-
standing of system processes such as 
heterogeneity, environmental flows, inter-
relationships between water bodies, and 
catchment runoff effects. 

End user requirements should determine 
the optimal spatial sampling scheme, but 
logistical, operational, and financial con-
straints usually prevent the optimal sampling 
scheme from being realized. Extensive dis-
tances, for instance, may make capturing the 
spatial distribution of measurements using 
field-based methods unfeasible. EO-derived 
water quality information, albeit for a more 
limited set of parameters, may be used to over-
come the challenges in water quality sampling 
schemes based solely on field-based 
approaches to provide complementary over-
sight of water quality conditions and trends. In 
future, capacity building should focus on inte-
grating EO data and field-based observations 
and on developing early warning tools for algal 
blooms. 

Table 6.12 provides an overview of existing 
and upcoming satellite sensor systems of rele-
vance for monitoring inland water quality 
internationally and their suitability for mea-
suring optical water quality variables. While 
policy, legislative, environmental, and climate 
change drivers should steer the development 
of an operational system for inland water 

Algorithm development to allow applica-
tion beyond a single inland water body is only 
now being addressed in some research proj-
ects targeting larger lakes with ocean color 
sensors (Global Lakes Sentinel Services 
[GLaSS] and GloboLakes). The monitoring of 
water quality conditions across the Great Bar-
rier Reef World Heritage Park offers the best 
example of the potential to deliver water 
quality products derived from semi-analytical 
inversion algorithms. MODIS data are used to 
derive concentrations of key water quality 
constituents for the reef on a daily basis, and 
the data are delivered via the Australian 
Bureau of Meteorology’s Marine Water Qual-
ity Dashboard.22 

The following data services and research 
projects provide water quality products 
derived from Earth observation: 

• Downstream services of the European 
Union and ESA Copernicus Programme23

• Marine water quality and forecasting by 
the European Union and ESA’s Environ-
ment Monitoring Services24 

• Monitoring of harmful algal bloom in Lake 
Erie by the National Oceanic and Atmo-
spheric Administration (NOAA)25 

• Development of a harmful algal bloom 
advisory and forecasting capability by the 
European Union’s ASIMUTH (Applied 
Simulations and Integrated Modelling for 
the Understanding of Toxic and Harmful 
Algal Blooms) project26

• Global Earth observation for inte-
grated water resource assessment by 
EartH2Observe.27

These examples are discussed further in 
appendix B.

Past, Present, and Future Sensor Availability 
for Inland Water Mapping 
In many countries, field-based water quality 
monitoring efforts are insufficient to provide 
national-scale assessments of inland water 
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for smaller or narrow water bodies, reducing 
the need for high-resolution imagery and thus 
also reducing cost.

Spectral resolution (the number, width, and 
placing of spectral bands) ultimately deter-
mines the amount and accuracy of water 
quality variables that are discernable from a 
water body (table 6.12). Sensors with few 
bands may only be used to detect total sus-
pended matter, vertical light attenuation, Sec-
chi disk transparency, turbidity, and colored 
dissolved organic matter if a blue spectral 
band is available. Algal pigments such as chlo-
rophyll may also be detected. However, at low 
concentrations, accuracy will be low, as broad 
spectral bands cannot discriminate the more 
narrow features of pigment spectral absorp-
tion from other absorbing and backscattering 
materials in the water column. As the number 
of narrower and more suitably positioned 
spectral bands increases (MODIS, MERIS, 
and Ocean Colour Monitor [OCM]-2), chloro-
phyll becomes an accurately measurable vari-
able, and types of phytoplankton pigment 
such as cyanobacterial pigments may become 
detectable.

Radiometric resolution determines the low-
est level of radiance or reflectance that the 
sensor can reliably detect per spectral band. 
As the spectral and spatial resolution 
increases, the useful signal relative to noise in 
the data decreases, but this trade-off in spec-
tral, spatial, and radiometric resolution is 
countered by improvements in detector tech-
nology where, in general, more modern sen-
sors have a higher radiometric sensitivity 
overall than older sensors.

NOTES

 1. For more information on the data sets of the 
International Precipitation Working Group, see 
http://www.isac.cnr.it/~ipwg/data/datasets.html. 

 2. Orographic lift occurs when an air mass is forced 
from a low elevation to a higher elevation as 
it moves over rising terrain. As the air mass 
gains altitude, it quickly cools down adiabati-
cally, which can raise the relative humidity to 

quality monitoring, the ideal satellite sensor 
system for inland water quality does not exist; 
there are trade-offs between spatial, temporal, 
spectral, and radiometric characteristics. Thus 
having satellite sensors available for detecting 
and monitoring retrospective, current, and 
future inland water quality is necessary for 
developing regional, national, and transbound-
ary inland water quality monitoring systems 
using Earth observation.

Different satellite systems show different 
trade-offs between temporal frequency (once a 
day to once a year), spatial resolution (2-meter 
to 1.2-kilometer pixels), spectral resolution 
(and the related issue of more water quality 
variables at higher confidence levels), radio-
metric resolution (how accurate and how 
many levels of reflectance are measurable), and 
the cost of acquiring unprocessed satellite data 
(ranging from US$0 to about US$30 per square 
kilometer). This also influences their useful-
ness for inland water quality assessment.

Tools are needed for reporting information 
on water quality at a variety of scales (conti-
nental, transboundary, regional, and national). 
However, satisfying this need is challenging 
given the multiple-size scales of inland water 
bodies with respect to the different spatial and 
spectral resolutions offered by the different 
satellite sensors. 

Spatial resolution has consequences for 
imaging small water bodies such as small- or 
medium-width river systems. In such situa-
tions, high-spatial-resolution imagery (with 
pixel sizes of 2 to 10 meters) may be the only 
option, possibly leading to significant data 
acquisition costs. A multiple-resolution 
approach is most cost-effective where coarse 
(but frequent) satellite imagery is used for 
larger lakes, reservoirs, and river sections and 
high-resolution imagery is acquired and pro-
cessed only when necessary. Rather than imag-
ing all water bodies, a “virtual station concept” 
approach could systematically image a selec-
tion of water bodies that represent the associ-
ated aquatic ecosystem (be it natural or 
artificial). This would be especially effective 

http://www.isac.cnr.it/~ipwg/data/datasets.html
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 21. For information on the project, see http://water 
.umn.edu/lwc/index.html.

 22. For the Marine Water Quality Dashboard, see 
http://www.bom.gov.au/marinewaterquality/.

 23. For an overview of the EU-ESA Copernicus 
Programme Downstream services, see http://
gmesdata.esa.int/web/gsc/core_services/
downstream_services.

 24. For more information on the Copernicus Pro-
gramme’s Environment Monitoring Services, see 
http://www.myocean.eu/web/26-catalogue 
-of-services.php.

 25. For information from NOAA’s Great Lakes Envi-
ronmental Laboratory, see http://www.glerl.noaa 
.gov/res/Centers/HABS/lake_erie_hab/lake_erie 
_hab.html.

 26. For the ASIMUTH project, see http://www 
.asimuth.eu/.

 27. For EartH2Observe, see http://www 
.earth2observe.eu/. 
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INTRODUCTION 

For many potential applications, Earth obser-
vation (EO) data products will be immediately 
and obviously useful for improving water 
resources management (WRM) and water 
monitoring. Examples include using evapo-
transpiration (ET) to assess crop water use in 
irrigated regions, chlorophyll estimation to 
monitor water quality in water bodies that 
provide domestic water supply, and satellite 
rainfall to estimate the amount and duration of 
rainfall in ungauged regions. 

In these examples, as in many others, care-
ful consideration of the spatial resolution, 
temporal frequency, data latency, and longev-
ity of the satellite systems is needed to select 
the most appropriate EO product from the 
often wide range of products available, taking 
into account the specific WRM problem to be 
addressed. Furthermore, there are as many, if 
not more, WRM issues where the application 

of EO technologies and techniques is either not 
suitable or less apparent and needs to be aug-
mented with hydrologic modeling or field-
based metering to be useful.

This chapter provides guidelines to help 
project leaders to decide whether Earth 
observations may be useful and, if so, what 
the most suitable data sources to consider 
would be. For each water resources applica-
tion area, issues related to accuracy, avail-
ability, maturity, complexity, and reliability 
are briefly discussed. The chapter aims to 
provide a simple framework to help decision 
makers to determine, for a given WRM issue, 
how EO products might best be employed to 
generate the required information and how 
to select the EO data products with the most 
appropriate characteristics or specifications. 
The focus lies on what questions to ask once 
it has been concluded that exploring EO 
options for the WRM problem at hand is 
worthwhile. 

Assessing the Characteristics of 
Required and Available Earth 
Observation Data 

CHAPTER 7



potentially be useful. If it is decided that they 
could be useful, certain questions must be asked 
regarding the data characteristics. The chapter 
begins by summarizing these questions and 

EO-based solutions are not always applica-
ble. For this reason, the chapter begins by pro-
viding some precursor questions meant to 
clarify whether EO data products could 

Yes

Yes

YesNo

No

No

What WRM questions need to be answered?
What are the policy or regulatory drivers?
Who are the stakeholders and beneficiaries?

Define the nature of the
WRM problem

Decision tree Questions to ask Chapter and tables

Is metering available?
What is the condition of the data networks?
What are the impediments to sharing, 
collating, and archiving the data?
What has been done in the past?
Any monitoring? Modeling?

Justification
Will complement ground-based monitoring
networks or serve as the sole information
source?
Will it be used in conjunction with
modeling?
Are the EO data stream(s) suitable for
long-term WRM decision support?

Suitability
What variables can EO provide?
Are data products readily available?

Spatial resolution
What is the appropriate pixel size?
Temporal frequency
How frequent do these observations need
to be?
Record length
How far back in time does your data record
need to go?

In situ data requirement
How much in situ data are used in data
product?
Reliability
What is the certainty associated with the 
supply of that product across space and 
through time?
Accuracy
What is the uncertainty associated with the 
data estimates?
Maturity
How established is the data product?
Complexity
What level of complication is involved in the 
process of converting the EO data into the 
data product?

Define the status of
existing observation

networks

Determine minimum
required data
characteristics

Do you need
to use Earth observation

data?

Can EO
potentially provide the

required data?

Can the EO
product meet the data

requirements?

Do not
use EO

Use EO
product(s)

See chapter 5 and tables 5.1, 
5.2, and 5.3 (WRM issues and 
EO variables).

See tables 5.1, 5.2, and 5.3.
See chapter 6 and tables 6.3 
through 6.12.
Examples in appendix B.

Sensor dependent. See tables 
6.3 through 6.12.

Product specific. See tables 7.2 
through 7.14.

Figure 7.1   
Guidelines for 
Determining 
Whether to Use  
EO Products 
Note: EO = Earth 
observation;  
WRM = water 
resources management.
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place another constraint on the solutions that 
are feasible. For example, if the goal is to 
respond rapidly to an impending natural disas-
ter, this will eliminate some of the EO products 
with greater latency. 

then putting them in the context of their suit-
ability for WRM decision support. It then sum-
marizes the suitability of the EO data products 
described in chapter 6, guided by the questions 
outlined in this chapter. The information con-
tained in this chapter and the key questions to 
ask are summarized in the flowchart presented 
in figure 7.1. 

ESTABLISHING THE ROLE OF EARTH 
OBSERVATION TO SUPPORT WRM 
DECISION MAKING 

What Questions Need to Be Answered?
Earth observation cannot provide an appropri-
ate solution for all WRM problems. For this 
reason, box 7.1 poses some questions that can be 
asked to determine the nature of the WRM 
problem under investigation and the sources of 
information essential to the overall decision-
making process. Points 1 and 2 of box 7.1 are dis-
cussed in greater detail in the following 
paragraphs. The questions listed under point 3 
are related not to Earth observation but to insti-
tutional goals and capability; though important, 
they are not addressed in this publication. 

Nature of the WRM Problem
It is important to begin by asking, what WRM 
questions need to be answered? Outlining the 
specific set of WRM questions is critical to 
establishing the scope of the investigation, 
including the geographic extent, amount of 
investment (What can be feasibly achieved?), 
and expectations for monitoring and reporting 
programs beyond a project of fixed duration. 
Government policy and regulatory drivers 
related to the broad WRM issues to be 
addressed probably exist, perhaps in response 
to an environmental crisis. The higher-level 
WRM statements and policy will need to be 
translated to very specific information and 
reporting requirements. The characteristics of 
key stakeholders and their information 
requirements and communication options may 

Guiding Questions to Aid in the Decision Whether 
to Use Earth Observation for Water Resources 
Management

BOX 7.1

1. Nature of the problem

• What WRM questions need to be answered?

• What are the policy or regulatory drivers of these questions?

• Who are the stakeholders and beneficiaries of a solution to the 
WRM problem?

2. Existing data and observation networks

• What metering is currently available? 

• What is the condition of the data networks? 

• Are there any impediments to sharing, collating, and archiving the 
data (such as transboundary issues)?

• What, if anything, has been done in the past to address the issues 
at hand? 

 • Any monitoring? Modeling?

• Can Earth observation fill an information gap?

 •  Will it complement field-monitoring networks or serve as the 
sole source of information?

 • Will it be used in conjunction with modeling?

 •  Are the EO data stream(s) suitable for long-term WRM decision 
support?

3.  Sustaining and maintaining WRM decision support and monitoring 
programs

• Is there capability to adopt a solution in the short and longer 
term?

• What key national organizations and international experts could 
be potential partners regarding Earth observation?

• What is the local capability to adopt new techniques and tech-
nologies?

 •  What computing infrastructure, if any, is needed? Is it available, 
and who owns it?

 •  To what degree will local expertise require training in new 
techniques and technologies?

• What level of national versus international resourcing will be 
 required?
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production system. This includes aspects such 
as the mission lifetime of the satellite, the options 
in case of mission failure, any redundancy in data 
streams through other sensors, service-level 
agreements, and ongoing provision of a stable 
data product with known and unchanging (or 
perhaps improved) characteristics. Of course, 
these aspects only need to be considered if “live” 
information systems are to be developed, for 
instance, for long-term  decision-making support 
for water resources management and consistent 
monitoring over time. 

DESCRIBING THE 
CHARACTERISTICS OF EO DATA 
PRODUCTS 

To identify which data products might be 
suitable for a given application, numerous 
data characteristics can be assessed that relate 
to spatial and temporal attributes, accuracy, 
and reliability. Eight core data characteristics 
are useful for establishing the suitability of 
data for a predetermined task: spatial resolu-
tion, frequency and timing, record length, 
field data requirements, data product reliabil-
ity, data product accuracy, data product matu-
rity, and data product complexity (table 7.1). 
Three of these characteristics are sensor spe-
cific in that they depend on the satellite sen-
sor from which they are derived, whereas the 

Existing Data and Observation Networks
It is important to assess any existing (past or 
current) field observation networks and data. 
Sometimes a better solution may be to install a 
network of field-based sensors, upgrade exist-
ing networks, or rehabilitate former gauging 
networks. Of course, such a solution has impor-
tant implications that need to be considered, 
for example, regarding spatial coverage and 
cost-efficiency (for example, capital costs, 
ongoing maintenance, and data management 
and processing). Alternatively, the current net-
work might be appropriate in principle, but 
sharing measurements across organizational or 
jurisdictional boundaries—within or between 
nations—may be challenging. Conducting a 
thorough analysis of the status and access to 
existing observation networks and data is a 
valuable first step toward identifying any 
requirements for Earth observation to fill data 
gaps (see chapter 4 for additional information).

Although there are exceptions, EO data 
products are usually not directly suitable for 
addressing WRM problems unless augmented 
with additional data. Field measurements, 
where and when they are available, are critical 
in the development of any EO data product and 
in the assessment of accuracy and uncertainty 
(often called “validation,” the subject of the 
chapters in part III). They are also highly valu-
able for correcting (or “calibrating”) the prod-
uct in regional applications or for enhancing 
the resolution (for example, through statistical 
downscaling). 

Even more valuable, but also more compli-
cated, is to use EO data along with field data 
and hydrologic computer models and with 
knowledge of the errors in each of these to 
constrain the hydrologic estimation or predic-
tion (see chapters 4 and 11 for additional infor-
mation). Such a model-data fusion approach 
makes the EO data more directly relevant and 
valuable to the WRM variables of interest. 

Finally, the prospects for ongoing data collec-
tion and access need to be considered if they are 
to form a component of an operational data 

Table 7.1  Major Characteristics of Data Products and 
Their Type of Dependence

DATA PRODUCT 

CHARACTERISTIC DEPENDENCE

Spatial resolution Sensor specific

Temporal frequency Sensor specific

Record length Sensor specific

Field data requirements Product specific

Reliability Product specific

Accuracy Product specific

Maturity Product specific

Complexity Product specific
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dates. Often, however, satellite sensors acquire 
data long past their mission end dates (for 
example, Landsat-5). Generally speaking, the 
longer the record length, the older the satellite 
and its associated technology. Thus there is 
usually a trade-off between record length and 
other data attributes, such as accuracy, spatial 
resolution, and number of spectral bands.

Field Data Requirements
Some EO data products are generated solely 
from satellite observations, and some are gen-
erated from a combination of satellite and 
field-based observations. The latter have much 
higher input data requirements and so are 
more dependent on the availability of suitable 
field data. They are also generally more com-
plex to generate and can become limited to the 
specific locations and times that the field data 
represent: 

• Low field-based (data) requirement prod-
ucts do not use field data or use it only for 
validation purposes. 

• Medium field-based (data) requirement 
products need field data to calibrate the EO 
data or use a moderate amount of field data 
to derive the final EO product itself (such 
as when river gauge data are combined 
with satellite-derived flood extent data to 
estimate flood volumes). 

• High field-based (data) requirement prod-
ucts incorporate multiple sources of field 
data (for example, most ET and soil mois-
ture data products), sometimes in complex 
data assimilation systems.

Reliability
Data product reliability refers to the certainty 
of supply of that product across space and 
through time. The greater the spatial cover-
age, the more frequently the product is 
updated; the greater the number of options for 
sourcing the product, the higher the reliability 
of the product.

five other characteristics are product specific 
in that they depend more on how the data 
product was generated than on their sensor 
source. These eight characteristics are defined 
in this section.

Spatial Resolution
Sometimes called the spatial frequency or 
image resolution, the spatial resolution of EO 
data refers to the pixel size of the image. Spa-
tial resolution of data determines the precision 
with which the spatial variation of the observed 
phenomenon can be captured. A relatively 
large pixel size will capture less spatial varia-
tion than a relatively small pixel size.

When a pixel straddles two (or more) dis-
tinct ground features (such as a water body and 
adjacent vegetation), the pixel captures a mix-
ture of the signals from both features and is 
referred to as a “mixel.” Mixels make image 
interpretation more difficult, and the larger the 
pixel size the more mixels the data are likely to 
contain. 

Temporal Resolution
The temporal resolution of data (or the tempo-
ral frequency) refers to how often a sensor 
makes observations of a given location. In the 
case of polar-orbiting satellites, frequency is 
related to overpass frequency and is typically 
measured in days. The frequency of geostation-
ary satellites is much higher, being measured in 
minutes to hours. Relatively high-frequency 
observations are able to capture the dynamics 
in fast-changing processes better than rela-
tively low-frequency observations.

For some applications, the time of observa-
tion can be important to ensure that the obser-
vations occur at the same time each day or at 
specific times of the day, such as at noon.

Record Length
The record length refers to how long the record 
of data is. This is typically a function of the 
period of operation of the satellite and so is 
determined by the mission launch and end 
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well-established science and can be gauged by 
its level of validation, acceptance, and  adoption: 

• Low maturity indicates that the product is 
still in an experimental stage. 

• Medium maturity indicates that the prod-
uct is developmental in that the underlying 
science is mature but the product’s conver-
sion to being operational is still in progress.

• High maturity refers to a proven—widely 
tested and adopted—operational product.

Complexity
Data product complexity describes the level of 
complication involved in converting the EO-
processed data into the data product. Com-
plexity is a function of, for example, the 
number of methodological steps involved, 
the number and type of input data sources, the 
level of mathematics involved, the volume of 
data to be processed, and the technical exper-
tise required:

• Low complexity indicates no function or 
a very simple function for converting pro-
cessed satellite data into the data product, 
requiring basic technical expertise. 

• Medium complexity indicates a moderately 
complex method. 

• High complexity indicates a highly com-
plex method for generating the data 
product, requiring advanced technical or 
computational expertise.

DETERMINING THE 
CHARACTERISTICS OF MINIMUM 
REQUIRED EO DATA 

By analyzing the information required to 
address a specific issue at hand, it should be pos-
sible to translate these requirements into 
 minimum required data characteristics or spec-
ifications that can be used to assess the 

• Low reliability describes a product that 
is tailor-made for a specific time, region, 
or application or is generated by only one 
organization. 

• Medium reliability describes a product that 
typically has wide (global) coverage and is 
frequently updated but comes from only 
one source organization. 

• High reliability describes a product with 
global coverage that is frequently updated 
and can be sourced from multiple indepen-
dent organizations.

Accuracy
The accuracy of data products is an estimation 
of the uncertainty associated with the data esti-
mates. Accuracy can be described in absolute 
terms (that is, in physical units such as 
 millimeters per year) or in relative terms (usu-
ally as a percentage). For example, if an estimate 
of evaporation of 200 millimeters per year has 
an error of 10 percent (therefore, an accuracy of 
90 percent), the real value could be as low as 
180 or as high as 220 millimeters per year.

Rarely will the accuracy of an EO data prod-
uct be as high as that of an equivalent field mea-
surement. Despite a generally lower accuracy, 
EO products can still be an important data 
source, as EO imagery can provide information 
with greater spatial extent, spatial density, or 
temporal frequency than most field-based 
(point-based) observation networks. For this 
reason, the combination of EO and field data 
generally provides the best information out-
comes. Part III provides additional information 
about validation of EO estimates of precipita-
tion, evapotranspiration, soil moisture, snow 
cover and snow water equivalent, surface water 
levels and streamflows, and streamflow out-
puts from models using EO inputs.

Maturity
Product maturity relates to how established 
the data product is. A well-established, or 
mature, product is generally founded on 
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Chapter 5, especially tables 5.1–5.3, dis-
cusses the water-related issues for which Earth 
observation may be useful, and chapter 6 pro-
vides information about each of the EO appli-
cation areas relevant to water resources 
management and about existing and future EO 
systems (tables 6.3–6.12).

Suitability: Can EO Provide the Required 
Information?
Not all variables and processes can be mea-
sured with Earth observation, whether directly 
or through inference using a model. For this 
reason, a key question to ask is whether the 
required data or information products can be 
generated from remote sensing at all. Table 6.2 
in chapter 6 provides an overview of the most 
commonly derived products suitable for WRM 
applications.

If the required data product is not readily 
available, it may still be possible to derive such 
a product from existing processed data, but 
this is likely to require engaging EO expertise. 
In that case, it would need to be determined if 
and how a desired data product might be 

Table 7.2  Guiding Questions for Determining the 
Minimum Requirements of EO Data Products

CHARACTERISTIC GUIDING QUESTIONS

Justification do you need to use EO data?

Suitability Can EO provide the required 
data products?

Spatial resolution What is the appropriate pixel 
size?

Temporal frequency How frequent do these 
observations need to be?

Record length How far back in time does your 
data record need to go?

Reliability do you need guaranteed 
continuation of data supply into 
the future?

Accuracy What degree of accuracy is 
needed in the data products?

Maturity do you want to use only data 
products that are commonly 
used?

Note: EO = Earth observation.

suitability of EO products. This section des-
cribes those minimum requirements. Table 7.2 
 presents a list of questions for determining the 
requirements. 

Sometimes the answer to a question might 
not be obvious. For instance, there may be 
open questions about the overall approach to 
the WRM issue at hand or there may be a 
potential degree of circularity between what 
EO data are available and what the required 
characteristics are. Under such circumstances, 
consultation with an EO area expert is likely to 
be beneficial.

Justification: Do You Need to Use EO Data?
When field observations are accessible and 
sufficiently informative, it may well be possible 
to answer WRM questions directly, without 
using EO data. Relevant questions to consider 
are listed in box 7.2.

If the answer to any of these questions is 
negative, it may be worth exploring the poten-
tial usefulness of EO data products, either by 
themselves or, more typically, in conjunction 
with field observations and computer models.

Screening for Adequacy of Field Observations

BOX 7.2

• Are the data well described—that is, is it clear what was measured, 
how, where, and when?

• Are the right variables measured?

• Are the data of sufficient spatial density across your area of interest?

• do the data cover the period of interest?

• Are the measurements frequent enough?

• Are the measurements available throughout the time period, with-
out important gaps?

• Are the data of known and suitable accuracy?

• Are the data guaranteed to be free from bias and manipulation?

• Are the data available in digital form and in an interpretable 
 format?

• Are the data publicly available or is it clear they will be made avail-
able by their custodian?

• do the data have to continue being collected into the future?



152  |  P A R T  I I :  E A R T H  O B S E R V A T I O N  F O R  W A T E R  R E S O U R C E S  M A N A G E M E N T

Over what time scales does the phenomenon 
of interest vary, or how long does it take for the 
phenomenon to vary significantly when con-
sidering the intended purpose? As a bare mini-
mum, satellite observations should be available 
at least at the same frequency as the variation 
in the phenomenon of interest. For short-lived 
events, the exact timing of observation is also 
likely to be important. If the dynamics of a pro-
cess or event are important, a frequency sub-
stantially less than the duration of the event 
will be necessary.

For instance, seasonal flooding may last for a 
month. However, if you are interested in peak 
flood extent and that peak only lasts a day, a sin-
gle daily satellite measurement will suffice to 
capture it, but the timing of the measurement 
will be critical and may be difficult to achieve. 
Alternatively, if the advance and recession of the 
flood are of interest, regular (weekly or even 
daily) measurements will be required. Another 
example is an algal bloom in a lake that lasts a 
few days and can only be detected by a satellite 
sensor that has high frequency or that can be 
pointed at an area of interest and therefore tar-
get a specific area. The latter, of course, requires 
that there be sufficient time between knowledge 
of the event and acquisition of the imagery, and 
it usually comes at a cost. Conversely, if the sea-
sonal pattern of algal levels across a year is of 
interest, as few as four images may be sufficient.

The satellite data product tables in chap-
ter  6 (tables 6.3 through 6.12) provide details 
on the revisit times of the main EO data prod-
ucts suited to water resources management.

Record Length: How Far Back Does the 
Data Record Need to Go?
Analysis of changes (trends or shifts) in the 
behavior of a system will require a record that is 
sufficiently long to establish such changes with 
confidence. Similarly, accurate estimation of the 
mean and variance of a particular variable will 
require a sufficiently long record for calculation. 
The question as to what length of record is suffi-
cient for these purposes cannot be answered, but 

derived from processed data. Determining 
suitability requires a deeper understanding of 
the characteristics of individual satellite sen-
sors and the relationship between the observa-
tion and the variable of interest. Consultation 
with an EO expert should quickly settle 
whether there is any such prospect.

Spatial Resolution: What Is the  
Appropriate Pixel Size?
Spatial resolution is an important and almost 
universal characteristic of EO data. In each 
application it will be necessary to consider the 
minimal distances over which the phenome-
non of interest (precipitation, soil moisture, or 
water quality) varies or distance over which 
any variations in the phenomenon would 
become significant for the purpose at hand. As 
a rule of thumb, the “pixel size” (the character-
istic length of one image pixel as measured on 
the Earth’s surface) should be no more than a 
quarter of the length over which the phenome-
non varies and preferably finer. For example, if 
the phenomenon of interest is total crop evapo-
ration from fields that are typically about 600 x 
600 meters in size, the pixel size of the ET 
product should be no larger than 150 meters. 
Alternatively, if the variations in evaporation 
within that field are of interest, a resolution on 
the order of 10 meters might be required. 

Tables 5.2 and 5.3 in chapter 5 provide 
details on the spatial resolution of the main EO 
data products suited to water resources man-
agement. The pixel size listed generally reflects 
the smallest pixel size of the sensor from which 
the data are derived.

Some practitioners may be inclined to use 
the highest resolution, but the cost of doing so 
can sometimes be very high and the value 
added may not be worth the cost. This caveat 
also applies to temporal frequency.

Temporal Resolution: How Frequent Do 
the Observations Need to Be?
The temporal resolution needs to suit the 
nature of the question asked—for example, 
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will remain available into the future with little 
or no interruptions? Or are the data required 
for a one-off, project-based study, with no 
 follow-on monitoring being anticipated? This 
will determine whether it is possible to use 
only data derived from stable, likely long-term 
satellite missions with a track record of reli-
ability or whether it is possible to include data 
from short-term or experimental missions (the 
majority of EO satellites even today). It may be 
important to ascertain whether there is a long-
term plan to ensure that satellite sensors and 
the data stream will be available into the future. 
This is particularly important when deciding 
whether to invest in the infrastructure 
re quired for operational satellite imagery and 
 geographic information system processing, 
 perhaps including information validation pro-
grams and Web-based data services or other 
forms of information products. 

However, officially available information 
about mission continuity should only be used 
as general guidance: a current continuation 
policy may be changed in future, whereas a 
mission that currently has no official prospect 
of continuation may be replaced by a compa-
rable sensor with identical, similar, or even 
better characteristics in future. Arguably the 
most reliable test of the risk to investment is 
redundancy: if several missions make the same 
or quite similar observations, the associated 
risks are usually correspondingly lower.

some record length is required. As a general rule, 
a minimum of 15  years of observations is often 
required before trends in natural phenomena can 
be analyzed properly (see chapter 4 and table 
4A.1 in annex 4A, available online at https://
openknowledge.worldbank.org/ handle 
/10986/22952, for additional information); the 
World Meteorological Organization defines “cli-
mate” as pertaining to a period of at least 30 years. 

Alternatively, the application may provide 
near-real-time information and therefore per-
haps only the most recent period (for example, 
a day or month) is of interest, although often 
such information will need to be considered in 
a historical context. 

Finally, the particular application may only 
need data for a very specific period of interest, 
such as the 2013 growing season, one drought-
flood cycle, or a water year. This reduces the 
demands on record length. 

The satellite data product tables in  chapter 6 
(tables 6.3 through 6.12) describe the record 
lengths (launch and end dates, if applicable) of 
the main EO data products suited to water 
resources management.

Accuracy: How Good Do the  
Data Have to Be?
What is the acceptable tolerance of error in the 
data product for the purpose at hand? There 
are many possible ways in which to express 
accuracy. These will depend on the character-
istics and intended use of the data product. 
Examples are given in box 7.3.

Conventional ways of validating EO data 
typically focus on the first two aspects— 
precisely the standard type of information that 
generally is provided. However, it can be very 
challenging to obtain accurate information on 
other aspects, sometimes even from experts on 
the particular data source. 

Reliability: Is Continued Supply of Data 
into the Future Essential?
This is an important question to answer. Is 
assurance required that the EO data source 

Examples of Accuracy Parameters

BOX 7.3

• Absolute units (20 gigaliters per day streamflow)

• Relative units (10 percent of estimated water use)

• Temporal correlation (for detecting trends or anomalies, the cor-
relation with ground-based measurements or independent data)

• Spatial classification (kappa statistics or confusion matrix for 
 mapping irrigated area)

• detection of extremes (detection scores for peak rainfall or flood 
extent)

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
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unchangeable decision-support system. Know-
ing which government department or agency 
is ultimately likely to be responsible for main-
taining any ongoing monitoring program and 
reporting the information helps to assess the 
available capacity and preparedness to adopt 
EO-based solutions. 

An EO solution may also require input from 
other national or international agencies 
(through the provision of observations or data 
products). Identifying and securing such key 
partnerships up-front may be critical to suc-
cess. To evaluate the resources available and 
required, the following aspects of information 
technology may be worth considering:

• Infrastructure for acquiring the data (via 
the Internet)

• Storage of the data and backup facilities

• Implementation and maintenance of the 
WRM system

Obviously, these infrastructure aspects also 
have implications for the human resources 
required to maintain and use them. In addition, 
area expertise will be required on an ongoing 
basis to interpret and report the information. 
Training may be needed, as well as ongoing user 
support in the transition from the research (or 
development) environment to the operational 
implementation of the solution. These aspects 
all depend on the complexity of the solution. 

DETERMINING THE GENERALIZED 
CHARACTERISTICS OF EO DATA 
PRODUCTS 

Now that the core characteristics have been 
suggested for describing the suitability of EO 
data products for water resources manage-
ment and guidelines have been provided for 
determining what data characteristics are 
required for the application at hand, this sec-
tion outlines the characteristics of available EO 
data products. Following the same format as 

The satellite data product tables in chapter 6 
(tables 6.3 through 6.12) provide some details 
on mission reliability for the main EO data 
products used in water resources management. 

Maturity: Can Data Products Be Limited to 
Well-Established Products?
Maturity refers to the degree to which an EO 
data product has been evaluated by the 
research or management community. With 
maturity comes a better understanding of the 
accuracy and suitability of the product for spe-
cific purposes and some pedigree and accep-
tance where its use has been successful.

Restricting the type of data products used to 
those that are well established and in common 
use reduces the risk of nondelivery and disap-
pointment. Operational products—those that 
are readily available and have been widely 
adopted across the WRM community—are 
generally restricted to mature products, or 
conversely, maturity comes with increased 
adoption across the community. 

However, interested parties may be willing 
to use emerging (experimental or developmen-
tal) products because they provide information 
that is otherwise not available and be willing to 
accept some degree of uncertainty related to 
product accuracy, suitability, and future avail-
ability. In such cases, undertaking a pilot or 
case study may be worth considering before 
attempting to implement an operational data 
service. If this is done in communication with 
the research and management community, 
such projects in themselves can rapidly achieve 
greater maturity and acceptance.

Complexity: What Data Management and 
Analysis Capacity Is Available?
Prior to pursuing an EO-based solution, it is 
probably beneficial to establish who will be 
responsible for running the WRM decision 
support or monitoring program and to evalu-
ate their mandate, resources, and capabilities. 
Ongoing “live” monitoring systems will be 
more demanding to maintain than an 
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range of options may be available for any given 
type of data product, which may represent deci-
sions about, for example, the trade-off between 
resolution and accuracy (averaging over larger 
areas or longer periods helps to increase the 
signal-to-noise ratio) or the ability to process, 
manage, and download the product (Internet 
speeds quickly become a bottleneck in using EO 
data). Therefore, some broad generalizations 
are made in the following tables. For more pre-
cise assessments, the documentation of individ-
ual products will need to be referred to, and 
product experts may need to be consulted. 

Precipitation
Table 6.3 in chapter 6 provides an overview of 
the range and characteristics of precipitation 
products derived from EO data and their rela-
tion to alternative sources of precipitation 
data. The accuracy of the different products 
varies with the season. Table 7.3 provides 

table 5.2 in chapter 5 and the discussion in 
chapter 6, where EO-derived data products are 
summarized in eight broad types of infor-
mation, this section contains eight tables 
 presenting the characteristics, respectively, of 
precipitation, evapotranspiration, soil mois-
ture, vegetation and vegetation cover types, 
groundwater, surface water, snow, and water 
quality data products. 

Some of these core characteristics are 
related directly to the satellite sensor from 
which the data are derived and are discussed in 
chapter 5. These sensor-specific characteristics 
are spatial resolution, frequency, and record 
length. Assessments of the remaining five char-
acteristics are summarized in the tables below, 
while accuracy is discussed in part III.

Beyond the constraints of the sensor obser-
vations used, the characteristics of derived data 
products also depend on the choices made in the 
process of generating the data product. A wide 

Table 7.3  Field Data Requirements and Characteristics of EO-Based Precipitation Products 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

Rain gauge 
analysis

High low Bias between ±0.2 millimeter 
day-1 (that is, as high as 60% for 
some regions); considered to be 
benchmark; accuracy decreases 
away from gauge location

High Medium Global gauge analyzes 
coarse spatial resolution; 
daily to monthly estimates; 
local or continental 
analyses typically about 
1–10 kilometers; accuracy 
decreases with distance 
from gauge location

Radar rainfall High low Bias between ±0.5 millimeter 
day-1 (30–40% accuracy); 
subhourly rain rates; coverage 
limited, and estimates uncertain 
at distance from radar 

High Medium Beam blockage 
(topography effects) 
hampers quality of 
estimate; higher resolution 
(in space and time) 
compared to satellite 
products, but patchy 
coverage for large-area 
applications

TIR, 
geostationary

low High Bias between ±2 millimeters 
day-1 (often greater than 100% 
error), best at estimating small 
convective rainfall systems 

High High Based on weak relationship 
between cloud top 
temperatures and rain rate; 
generally considered 
poorer-quality estimate than 
PMW; low latency (that is, 
real-time products possible)

(Continued)
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more detailed, quantitative analyses, including 
the categorical statistics (probability of detec-
tion, false alarm ratio). Chapter 9 discusses the 
validation of precipitation estimates derived 
from remote sensing (RS).

Evapotranspiration
For an overview of the generation of actual ET-
related data products from EO data, satellite 
sensors suitable for generating such products, 
and sensor-specific data characteristics, see 
chapter 6, specifically table 6.4. In chapter 6, 
three broad classes of actual ET estimation 
approaches are defined that make use of 
remote sensing: empirical, PM (Penman- 
Monteith) leaf area index (LAI), and resistance 
energy balance model. Empirical methods seek 

summary estimates of the bias (the average dif-
ference between product and gauge observa-
tions), taken from International Precipitation 
Working Group (IPWG) validation pages.1 

The values reported on the IPWG valida-
tion pages and in table 7.3 are regional aver-
ages. At the aggregate level, the errors can 
sometimes be of the same magnitude as the 
rainfall value itself or much higher (even 
greater than 100 percent relative error). The 
quality of satellite (and indeed of numerical 
weather prediction and gauge-based rainfall) 
estimates varies with geographic location, and 
it is recommended that persons interested in 
satellite precipitation products consult the 
IPWG websites or the literature (Ebert, Janow-
iak, and Kidd 2007; Sapiano et al. 2010) for 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

PMW, 
polar orbiting

low High Bias between ±1.5 millimeters 
day-1 (about 100% error); better 
than models at estimating 
convective rainfall systems over 
warmer months; patchy 
coverage

High High High-quality retrievals, but 
much coarser resolution 
than TIR; difficulty in 
capturing orographic or 
light rainfall; requires 
multiple PMW platforms 
for more complete 
coverage and needs to be 
calibrated with in-orbit 
precipitation radar 

Merged 
TIR-PMW

Medium Medium Bias between ±1 millimeter  
day-1; better at estimating 
convective rainfall systems over 
warmer months; global 
coverage

High High Coarse resolution but 
greater coverage than 
PMW alone; subdaily and 
near-real-time estimation 
possible

Merge 
TIR-PMW 
gauge

High High Bias reduced to between ±0.75 
millimeter day-1 on average 
(often less than 100% error); 
performance as with merged 
TIR-PMW; long latency

High High Coarse resolution; could 
be downscaled further 
with additional gauge data 
or analyses; greater data 
latency

Model 
reanalysis

low High Bias between ±1 millimeter  
day-1; better than PMW at 
estimating stratiform rainfall 
systems typical of cooler 
months

High High Coarse spatial resolution

Merged model, 
satellite and 
gauge analysis

High Medium Bias between ±0.5 millimeter 
day-1 (often less than 100% 
error); coarse resolution

High High Coarse spatial resolution; 
requires access to multiple 
data from multiple agencies

Note: EO = Earth observation; TIR = thermal infrared; PMW = passive microwave.

Table 7.3 (Continued)
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For some specifics about reliability, accuracy, 
maturity, and complexity, see the references in 
the section on evapotranspiration in chapter 6. 
Chapter 9 discusses the validation of RS-
derived ET estimates.

Soil Moisture
For an overview of the range of soil moisture 
products generated from EO data, the data char-
acteristics, and their use, see chapter 6 and 
table 6.6. Metrics of interest are given in table 7.5. 
The absolute accuracy of satellite soil moisture 
products is very rarely (if ever) of interest. For 
example, preprocessing of the data eliminates sys-
tematic differences between model estimates and 
observations prior to assimilation. The soil mois-
ture estimates derived from Earth observation 
only represent the first centimeters of the surface. 
Moreover, most applications (for example, in 
drought monitoring) require knowledge of soil 

to define statistical relationships between 
commonly observed EO data or products, usu-
ally either vegetation indexes or surface tem-
perature. The PM LAI approach uses the 
Penman-Monteith “combination equation” 
and EO-based vegetation characteristics (usu-
ally LAI) to model surface conductance. 
Energy balance approaches mostly use EO-
based land surface temperature to estimate 
sensible heat flux, which can then be used 
along with an estimate of the available energy 
to approximate latent heat flux. 

Obviously, the metrics described in table 7.4 
will depend on the specifics of the algorithms 
and characteristics of the data sets used. An 
attempt is made here to summarize actual ET 
products that are operationally available at 
either global or continental scale on a monthly 
or shorter time step, which usually relates to 
about 5-kilometer or finer spatial resolution. 

Table 7.4  Field Data Requirements and Characteristics of EO-Based Evapotranspiration Products

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

Empirical High Medium Usually better than 
1 millimeter per day; most 
reliable when and where the 
actual ET is dominated by the 
EO metric from which the 
statistical relationship was 
defined; for example, an 
empirical relationship between 
actual ET and a moisture index 
would work best under 
water-limited conditions 

Medium low limited ability to be 
improved via better 
process understanding; 
usually requires field 
calibration, which may 
only be regionally 
applicable

PM lAI Medium High Usually better than 
1 millimeter per day; generally 
reliable for places and times 
when transpiration is the main 
source of actual ET; has been 
implemented operationally 
over the globe

High Medium limitations when ET is 
not dominated by 
transpiration (that is, 
open water or soil 
evaporation); accurate 
estimation of spatially 
and temporally varying 
conductance is difficult

Resistance 
energy 
balance 
model 

Medium High Usually better than 
1 millimeter per day; generally 
reliable for estimating 
instantaneous flux and thus 
eminently suited for use with 
geostationary data

High High Usually requires scaling 
instantaneous estimates 
to daily or longer time 
steps; may suffer from 
over-parameterization

Note: EO = Earth observation; ET = evapotranspiration; PM lAI = Penman-Monteith leaf area index.
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Vegetation and Vegetation Cover
For an overview of the generation of vegetation 
and vegetation cover–related data products 
from EO data, satellite sensors suitable for gen-
erating such products, and sensor-specific data 
characteristics, see chapter 6 and table 6.7. 
There are four vegetation-related products, as 

moisture relative to some threshold or historical 
frequency. Therefore, correlation is a better stan-
dard metric for evaluating soil moisture products. 
For the products listed in table 6.6, values range 
from 0.6 to 0.9, depending on the product and 
where it is evaluated.  Chapter 9 discusses the vali-
dation of RS-derived soil moisture estimates.

Table 7.5  Field Data Requirements and Characteristics of EO-Based Soil Moisture Products 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

Active low Medium Higher spatial resolution, 
hampered by noise; accuracy 
affected in areas of highly 
variable terrain

High Medium Higher spatial resolution 
than PMW but can be 
significantly noisier; 
terrain effects

PMW low High Generally considered more 
accurate than data from active 
systems; poor performance 
over areas of dense vegetation

High High low spatial resolution; 
affected by dense 
vegetation and biased in 
the vicinity of coast or 
open-water bodies 

Combined 
active–PMW

low Medium Merged data, either through 
joint assimilation or statistical 
combination, better than 
individual products alone; 
well-known complementarity 
of the two sources 

Medium High Requires multiple 
sensors; SMAP is only 
mission (planned) where 
a satellite will have both 
active and PMW sensors 
on one platform

Assimilated 
into land 
surface 
models

low Medium Assimilating surface model 
products into land surface 
models has been shown to 
improve root-zone moisture 
estimation by 30–80%

low High Only way to get 
root-zone moisture; 
however, it is still 
experimental (SMAP 
provides root-zone 
moisture product by 
assimilating satellite 
surface models into land 
surface models)

Note: EO = Earth observation; PMW = passive microwave; SMAP = Soil Moisture Active Passive.

Table 7.6  Field Data Requirements and Characteristics of EO-Based Vegetation and Vegetation Cover Products 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

Albedo low (validation only) High 5–10% Medium low

NdVI low (validation only) High Usually 5–10% Medium low Relationship to real-world 
values is sensor specific

lAI low (validation only) High decreases as lAI 
increases; cannot 
detect change above 
values around 10

Medium Medium Performs best over 
low-density canopies (that 
is, lAI lower than 3–4)

fPAR low (validation only) High 5–10% Medium low

Note: EO = Earth observation; NdVI = normalized difference vegetation index; lAI = leaf area index; fPAR = fraction of absorbed photosynthetically active radiation.
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about reliability, accuracy, maturity, and com-
plexity, see the references cited in the section 
on groundwater in chapter 6. 

Surface Water
For an overview of the generation of surface 
water–related data products from EO data, the 
satellite sensors suitable for generating such 
products, and the sensor-specific data charac-
teristics, see chapter 6 and table 6.10. In 
table 7.8, both reservoir area and flood extent 
refer to the delimitation of the area covered 
with standing water, although they differ in 
size and temporal dynamics: reservoir area can 
range from a few square meters (as in the case 
of small ponds) to large lakes of several thou-
sands of square kilometers and generally 
change in area and volume relatively slowly in 
time. In general terms, floods are more dynamic 
in time than reservoirs and can change in area 
and volume in a matter of hours or days. Chap-
ter  9 discusses the validation of RS-derived 
surface water estimates.

shown in table 7.6: albedo, the normalized dif-
ference vegetation index (NDVI), the leaf area 
index, and the fraction of photosynthetically 
active radiation absorbed by green leaves 
(fPAR). 

A fifth product is vegetation cover, which is a 
qualitative classification of vegetation based on 
broad structural, climatic, or functional charac-
teristics. Because vegetation cover data are so 
varied in what they represent and how they are 
derived, they are not included in table 7.6.

Groundwater
For an overview of the generation of ground-
water-related data products from EO data and 
satellite sensors suitable for generating such 
products, see chapter 6 and table 6.9. The main 
EO approaches for estimating groundwater are 
through satellite gravity field mapping (gra-
vimetry) and radar interferometry. The former 
measures changes in the regional gravity field, 
while the latter measures changes in land sur-
face elevation (table 7.7). For some specifics 

Table 7.7  Field Data Requirements and Characteristics of EO-Based Groundwater Products 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

Gravity 
field

low Medium-low (GRACE 
is operating seven 
years beyond its 
intended lifetime; a 
follow-on mission is 
planned for 2017)

Suitable for very large 
areas; nominal precision 
is 1 gravity value

Medium High Spatial resolution for 
obtaining a reliable 
signal (about 
400 kilometers) is 
limited to very large 
basins; may not be 
suitable in areas of 
tectonic rebound

Surface 
height

High low (no product per 
se, requires 
interpretation for 
each instance)

Varying accuracy 
depending on 
interpreter’s skill and 
understanding of 
regional geology, 
groundwater systems, 
and surface conditions 

Medium High Requires the 
relationship between 
vertical surface 
movement and 
groundwater storage 
to be quantified; 
changes in vertical 
surface movement 
are limited to 
regional 
interpretation, 
requiring a specialist

Note: EO = Earth observation; GRACE = Gravity Recovery and Climate Experiment. 
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chapter  6) are listed again in box 7.4 for easy 
reference. 

The additional criteria that can be used to 
determine whether EO is appropriate for a 
particular water quality application are sum-
marized in this section. The information is pre-
sented in tables 7.10–7.12 covering empirical, 
semi-empirical, and physics-based inversion 
methods, respectively. 

Table 7.10 presents empirical methods 
(where a statistical relationship is established 
between the spectral bands used and the field-
based measurement of the variable, without 
necessarily being a causal relationship). This 

Snow
For an overview of the generation of snow-
related data products from EO data, satellite 
sensors suitable for generating such products, 
and sensor-specific data characteristics, refer 
to chapter 6 and table 6.11. Metrics related to 
snow cover, snow water equivalent, and snow 
moisture are given in table 7.9. Chapter 9 dis-
cusses the validation of RS-derived estimates 
of snow cover and snow water equivalents.

Water Quality
The six water quality variables that can be 
determined directly from EO data (see 

Table 7.8  Field Data Requirements and Characteristics of EO-Based Surface Water Products 

INDICATOR

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

Reservoir area low (validation only) Medium High (kappa greater than 90%) 
in classifications

High Medium No global, continuously 
updated product 

Flood extent low (mapping 
flooded areas) to 
medium (estimating 
river discharge) 

Medium High (kappa greater than 90%) 
in most situations; kappa 
50–90% possible when water 
is obscured by vegetation 
(flooded forests)

High Medium One global product; 
flooded area limited by 
cloud cover; optical 
methods give poor 
results in flooded forests

Water level low (validation only) High Altimetry accuracy dependent 
on sensor and size of water 
body; can be from about 
10 centimeters to 
50 centimetersa

High low limited to large 
reservoirs only

Note: EO = Earth observation.

a. A good pragmatic source of information about the accuracy of altimetry data can be found at http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/validation.htm.

Table 7.9  Field Data Requirements and Characteristics of EO-Based Snow Products 

PRODUCT

FIELD DATA  

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY

COMMENTS ON 

LIMITATIONS

Snow extent 
or fraction of 
snow cover

low Medium 10–20% error Relatively 
mature

Medium Affected by cloud 
cover

Snow water 
equivalent 

Medium Medium 20–30% error in flat areas; 
very large in mountainous 
areas

Mature for 
flat areas; 
low for 
mountainous 
areas

Medium for 
flat areas; 
complex for 
mountainous 
areas

Terrain is a major 
determinant of product 
quality; also affected by 
prior knowledge of 
snow properties such 
as density, particle size, 
and shape 

Snow 
moisture

High low low Very low Complex

Note: EO = Earth observation.

http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/validation.htm
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medium suitability for automation across large 
areas.

Table 7.12 refers to physics-based inversion 
methods (also known as semi-analytical inver-
sion methods): all variables are assessed simul-
taneously in one spectral inversion. This 
method provides physics-based consistency of 
results and is most suitable for automation 
across large areas.

Chapter 6 lists the water quality variables 
that EO can provide, and table 6.12 provides an 
inventory of EO satellites with their capabili-
ties and suitability.

Whether it is possible to process the EO 
data to retrieve quantitative water quality 
information will depend on the availability and 
quality of field data with which to calibrate the 
relationships. The quality will depend on 
whether the field data cover all variables of 
concern (see chapter 6) and whether these 
coincide closely with the times of satellite 
overpasses. 

Without any field data, empirical methods 
(where an empirical relationship is estab-
lished between field data and EO image pixel 
values) will not work for quantitative assess-
ments. However, it may be possible to apply 

method is the least suitable for automation 
across large areas unless accompanied by a sig-
nificant, ongoing field measurement activity 
across most water bodies present. 

Table 7.11 refers to semi-empirical methods 
(where a causal relationship is established 
between the spectral bands used and the vari-
able assessed). This method is less prone to 
providing spurious results, although results 
may have significantly higher errors outside 
the field-based range. This method has 

Water Quality Variables Directly  
Determined by Earth Observation

BOX 7.4

Directly assessed:

•	 Chlorophyll

•	 Cyanobacterial pigments 

•	 Colored dissolved organic matter 

•	 Total suspended matter 

Indirectly assessed:

•	 Vertical attenuation of light coefficient 

•	 Turbidity/Secchi disk transparency

Table 7.10  Field Data Requirements and Characteristics of EO-Based Water Quality Products: Empirical Methods 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY COMMENTS ON LIMITATIONS

CHl High Medium 50–70% High low Empirical methods are only valid for 
field-based ranges; are not 
transportable to other water bodies; 
may provide spurious results; 
simultaneous acquisition of the in situ 
measurement during overpass of 
satellite is an absolute requirement to 
establish the empirical relationship 

CYP High Medium 40–60% Medium Medium Same as previous

CdOM High low 40–60% low High Same as previous

TSM High High 80% High low Same as previous

Kd High High 80% Medium Medium Same as previous

Turb/Sd High High 70–80% Medium low Same as previous

Source: Matthews 2011. 

Note: EO = Earth observation; CHl = chlorophyll; CYP = cyanobacterial pigments; CdOM = colored dissolved organic matter; TSM = total suspended matter; Kd = vertical 
 attenuation of light coefficient; Turb/Sd = turbidity/Secchi disk transparency.
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the parameterizations available globally. Some 
generic approaches to assessing water quality 
are becoming available from the National 
Aeronautics and Space Agency (NASA) and 
the European Space Agency (ESA), for the 
coarse spatial resolution MODIS (Moderate 
Resolution Imaging Spectrometer) and 
MERIS (Medium Resolution Imaging Spec-
trometer) sensors.2

spectral band indexes derived from the litera-
ture to indicate relative measures of water 
quality. An alternative is to apply physics-
based inversion techniques, which will 
require a high level of expertise but can be 
automated more easily in the long run. The 
parameterization of the physics-based inver-
sion model will need to be based on expert 
assessment of the types of water present and 

Table 7.11  Field Data Requirements and Characteristics of EO-Based Water Quality Products: Semi-Empirical Methods 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY COMMENTS ON LIMITATIONS

CHl Medium High 60–80% High low Semi-empirical methods may be 
extrapolated beyond field-based ranges, 
although nonlinear effects do occur; may 
be transportable to other similar water 
bodies; reduced requirement for field 
measurement simultaneous with satellite 
overpass; requires good atmospheric and 
water surface glint correction for time 
series assessments

CYP Medium Medium 50–70% Medium Medium Same as previous

CdOM Medium Medium 50–70% Medium High In waters with high organic particulate 
matter and high algal contents, the CdOM 
absorption signal is masked

TSM Medium High 80% High low Same as CHl and CYP

Kd Medium High 80% Medium Medium Same as previous

Turb/Sd Medium High 70–80% Medium Medium Same as previous

Sources: Matthews 2011; Odermatt et al. 2012.

Note: EO = Earth observation; CHl = chlorophyll; CYP = cyanobacterial pigments; CdOM = colored dissolved organic matter; TSM = total suspended matter; Kd = vertical 
 attenuation of light coefficient; Turb/Sd = Turbidity/Secchi disk transparency.

Table 7.12  Field Data Requirements and Characteristics of EO-Based Water Quality Products: Physics-Based Inversion Methods 

PRODUCT

FIELD DATA 

REQUIREMENTS RELIABILITY ACCURACY MATURITY COMPLEXITY COMMENTS ON LIMITATIONS

CHl low High 60–80% Medium High High complexity: requires good 
atmospheric and water surface glint 
correction

CYP low Medium 55–75% low High Same as previous

CdOM low Medium 70% Medium High Same as previous

TSM low High 80% Medium High Same as previous

Kd low High 85% Medium High Same as previous

Turb/Sd low High 80% Medium High Same as previous

Source: Odermatt et al. 2012.

Note: EO = Earth observation; CHl = chlorophyll; CYP = cyanobacterial pigments; CdOM = colored dissolved organic matter; TSM = total suspended matter; Kd = vertical 
 attenuation of light coefficient; Turb/Sd = turbidity/Secchi disk transparency.
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improve the water quality of a large lake so that 
it may once again be in the condition to (a) pro-
vide water suitable for drinking (untreated for 
livestock but treated for human consumption), 
(b) support a local, small-scale freshwater fish-
ing industry, (c) maintain biodiversity, and 
(d)  allow recreational use. The lake has 
recently degraded from a mesotrophic system 
to a hypertrophic system prone to algal blooms. 
The lake displays potentially harmful algal 
blooms in spring, summer, and fall, which are 
probably caused by eutrophication as a result 
of direct and diffuse sources of agricultural and 
horticultural use of land around the lake as 
well as diffuse and point sources of untreated, 
primary sewage water. Field measurements of 
electrical conductivity and alkalinity or acidity 
are the only recently available water quality 
data. Anecdotal evidence suggests that the lake 
has transitioned from a clear productive lake 
10 years ago to a turbid, algal bloom– dominated 
lake today.

At this stage, the first questions to ask are as 
follows: Do you want to do EO-based retro-
spective assessment of your water system to 
understand its evolution through time or do 
you need EO measurements now to inform you 
of the water quality situation today and into 
the future? Table 7.13 lists a further set of 
appropriate questions for informing the deci-
sion about whether to proceed on the basis of 
EO data. 

This example illustrates how the informa-
tion contained in the tables in chapters 5 and 6 
may be used together with the guiding ques-
tions presented in this chapter to determine 
the most suitable EO sensor and method for 
assessing the development of water quality 
over the last 10 years for a lake undergoing 
environmental change. 

Two real-world examples in the research 
literature provide some in-depth information 
on how MODIS and MERIS were used to 
assess similar conditions in lakes in China 
(Hu et al. 2010) and South Africa (Matthews, 
Stewart, and Lisl 2012), respectively.

If appropriate field data are available in 
some or all of the water bodies of interest, it 
may be possible to develop and apply empirical 
methods and extrapolate these relationships to 
other nearby water bodies for which field data 
do not exist. It is essential that the range of 
field measurements (concentrations of sus-
pended matter, chlorophyll, and others) be suf-
ficiently large to be representative; it is not 
useful to apply empirical algorithms of clear 
glacier-fed lakes to turbid downstream rivers 
or lakes prone to algal blooms, for example. 

With physics-based inversion methods, it 
may be possible to refine the parameterization 
of the waters that do have field data and to 
extrapolate these values downstream or to 
nearby water bodies. However, although 
physics- based methods are less prone to error 
than empirical relationships, they do need a 
suitable parameterization of initial values. 

With access to a sufficient quantity of rele-
vant field data for the water bodies of concern, 
the question of whether to use Earth observa-
tion becomes more relevant: Are the field data 
sufficient (regarding time range, frequency, 
spatial representativeness, timeliness) to 
inform water quality management decision 
making on their own? The following questions 
should be asked at this stage: How far back do 
the field data archives go with respect to the 
EO archives (see table 6.12)? Are all of the vari-
ables required available in the field data or not? 
Can Earth observation provide the extra vari-
ables that are required? Are real-time data 
products required?

WORKED EXAMPLES

To illustrate how the decision process might 
proceed in practice, this section describes two 
fictional case studies.

Improving Lake Water Quality
You are project manager with responsibility 
for developing a program that will help to 
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and the environment by ensuring an adequate 
flow of water. 

The main question that needs to be answered 
is how much water is taken from surface water 
and groundwater. Additional questions include 
how much water is used by crops, how much is 
lost in transportation to crops (through ineffi-
ciencies in canals), what is the variation of water 
use between years (particularly wet and dry 
years), how does water use vary across the 
region, how much water is used by each type of 

Achieving More Sustainable Basin Water 
Management
The second hypothetical example is a river 
basin where irrigated agriculture is practiced 
regularly. Water is diverted from the river and 
also used from groundwater to irrigate crops. 
Natural vegetation, particularly wetlands, suf-
fer from reduced water supply, especially in 
drier than average years. A new project intends 
to improve the long-term sustainability of both 
the rural communities that depend on crops 

Table 7.13  Guiding Questions for Determining the Characteristics of Required EO Data Products: Water Quality Example

GUIDING QUESTIONS CHARACTERISTIC QUALIFIED ANSWER

do you need to use EO 
data?

Justification Yes, if there is no other source of information on water quality going back 10 years. 
Information from EO data is needed as it is the only archival information of a (semi)
quantitative nature available.

Can EO provide the required 
data products?

Suitability Yes, retrospective information on chlorophyll, cyanophycocyanin, suspended matter, 
turbidity, Secchi disk transparency, and vertical attenuation coefficient of light through 
time and space is key to understanding what aquatic ecosystem processes occurred in the 
last 10 years. However, each satellite sensor will differ in terms of ability to differentiate 
water quality variables based on its spectral resolution (see table 6.12). 

What is the appropriate 
pixel size?

Spatial resolution Given that the lake is 40 x 8 kilometers, lies in the subtropics (with a wet cloudy season 
often obscuring the lake and a dry season with clear sky conditions) and a minimum 
period of interest of the last 10 years, a study of tables 5.1, 5.2, and 6.12 shows that the 
MOdIS, MERIS, and landsat sensor image data are the appropriate ones to use.

How frequent do these 
observations need to be?

Temporal 
frequency

Coarser-scale MOdIS and MERIS data offer a higher temporal frequency of coverage. 
However, under cloud-free conditions, landsat may offer sufficient frequency.

How far back in time does 
your data record need to go?

Record length The length of the archive available and the period of interest will determine the suitability 
of each satellite sensor. 

do you need guaranteed 
continuation of data supply 
into the future?

Reliability Use tables 5.1, 5.2, and 6.12 to identify the sensor systems with continuing future data 
supply.

What degree of accuracy is 
needed in the data 
products?

Accuracy The capability to measure all water quality variables in table 6.12 increases from landsat to 
MOdIS to MERIS on the basis of their spectral characteristics. The accuracy will generally 
be highest for MERIS.

do you want to use only 
data products that are 
commonly used?

Maturity EO algorithms for water quality products are summarized in tables 7.10–7.12. Progressing 
from empirical methods (requiring a sufficient number of simultaneous field 
measurements synchronous with a satellite overpass) to semi-empirical measurements, to 
semi-analytical methods, reliability and accuracy increase, but complexity also increases, 
while maturity decreases. The relevant question for this specific case study is: do you need 
qualitative assessment of change or do you need the most reliable concentration 
estimates?

In this case, a qualitative assessment of the satellite archive where the transition in time 
and space can be mapped from a mesotrophic, clear lake to a hypertrophic, algal bloom–
dominated lake over a span of about 10 years does not require accurate water quality 
retrievals but does require frequent images with the capability to see when cyanobacteria 
start dominating the system. This leads to the conclusion that you should focus on the 
MERIS archive, using off-the-shelf products available through the BEAM software package.

Note: EO = Earth observation.
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points is very poor. In addition, it is suspected 
that a large amount of water is taken from the 
rivers and pumped from the ground illegally. 
Precipitation and other meteorological data are 
also scarce. To inform whether to proceed on 
the basis of EO data, table 7.14 lists additional 
pertinent questions. 

crop, and who uses the water. Ideally, this infor-
mation should be available for the previous 
15–20 years in order to characterize the spatial 
and temporal variability in water use. 

What is the status of the information net-
works? In this hypothetical example, the infor-
mation available from river gauges and diversion 

Table 7.14  Guiding Questions for Determining the Required EO Data Product Characteristics:  
Efficiency of Agricultural Water Use Example

GUIDING QUESTIONS CHARACTERISTIC QUALIFIED ANSWER

do you need to use EO data? Justification EO is an appropriate tool for estimating crop extent and water 
use, which complements the existing, field-based information (or 
replaces it when such information is not available).

Can EO provide the required data? The 
required products?

Suitability Yes, retrospective information on evapotranspiration, rainfall, and 
soil moisture can be obtained or generated.

What is the appropriate pixel size? Spatial resolution The required cell size depends on the size of the actual crop 
paddocks. It is assumed that images of tens of meters resolution 
are sufficient, such as landsat TM/ETM or similar. data of coarser 
resolution, such as MOdIS, can be of use as well, as it can provide 
a higher temporal repeatability. data from these two satellites can 
be used to estimate evapotranspiration. RS estimates of 
precipitation and soil moisture can complement the information 
available for the project, albeit at coarser resolution. 

How frequent do these observations need 
to be?

Temporal frequency The ET estimates should ideally include as many observations 
during the crop-growing cycle as possible. In practice, this will be 
limited by the data available. If using landsat or similar sensor (to 
provide the highest spatial resolution possible), data are available 
every 16 days, but cloud cover (depending on location and season) 
will determine how often a useful observation is available. Coarse 
spatial resolution data such as MOdIS can provide more frequent 
information (as it passes daily). A data-blending technique could 
be used.

How far back in time does your data 
record need to go?

Record length It is worth doing a retrospective analysis of water use in the last 
years to understand the interannual variability and trends in water 
use. How far back in time depends on the particular circumstances 
of the region under study and on the availability of data (both 
field based and from satellite) in the past. data from the landsat 
TM sensor are available from 1986–87 onward, so potentially 
almost 30 years of continuous observations at 30-meter resolution 
are available. 

do you need guaranteed continuation of 
data supply into the future?

Reliability Yes, if the project intends to maintain a system that can provide 
information on water use in the area into the future. If it is a 
one-off study looking at the present and past, continuation of 
data supply is not needed. 

What degree of accuracy is needed in the 
data products?

Accuracy The accuracy of ET estimates from EO is equal to or better than 
1 millimeter per day. This accuracy is generally adequate for 
assessing water balance in actively growing crops. 

do you want to use only data products 
that are commonly used?

Maturity There is currently no operational ET product at high spatial 
resolution (tens of meters). Some research agency may need to 
develop it for the study area.

Note: EO = Earth observation; ET = evapotranspiration; RS = remote sensing.
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NOTES

 1. For the validation pages, see http://www.isac.cnr 
.it/~ipwg/.

 2. For NASA, see oceancolor.gsfc.nasa.gov; for ESA’s 
BEAM software, see www.brockmann-consult.
de/cms/web/beam/.
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evapotranspiration, water levels (in large rivers, 
lakes, estuaries, and oceans), changes in aquifer mass 
(levels), topography (subsidence), temperature, snow 
cover, snow water equivalent, and many water qual-
ity parameters such as chlorophyll, cyanobacterial 
indicators, colored dissolved organic matter, and sus-
pended matter. In addition, land surface and hydro-
logic models are used to assimilate satellite estimates 
to simulate river flows, crops, landslides, and vector-
borne diseases, to name just a few (Fernández-Prieto 
et al. 2012; Guilloteau et al. 2014; Hong and Adler 
2008; Serrat-Capdevila, Valdes, and Stakhiv 2013).

Current and planned satellite missions are of great 
interest to natural resources managers in data-poor 
countries who can use RS estimates for their short- 
and long-term planning when a lack of ground net-
works undermines the feasibility and quality of 
natural resources evaluations and forecasting. 

OVERVIEW

Satellite-estimated hydrometeorological variables 
are increasingly available at spatial and temporal 
scales suitable for different research and operational 
applications in the fields of agriculture, hydrology, 
meteorology, and water quality and supply, among 
others. In parallel, an increase in computational 
power has allowed the development of a broad range 
of scientific and operational applications that help 
with understanding the climate on Earth, forecast-
ing weather and hydrologic events, and improving 
natural resources management. The continuous 
growth and improvement in the quality of the avail-
able remote sensing (RS) measurements provide sci-
entists with an unprecedented capability to observe 
and evaluate different components of the water cycle 
at spatial scales ranging from local to global. 

Satellite missions routinely measure or estimate—
more or less accurately—precipitation, soil moisture, 
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However, validity or “ground truth” of RS 
products is one of the main characteristics to 
be taken into account when considering their 
potential use. Satellite estimations are prone to 
several sources of uncertainty, which can sig-
nificantly affect the quality of the variables 
to  be forecasted. The three main sources of 
uncertainty in satellite estimations are retrieval 
errors, sampling errors, and inadequate ground 
observations (figure III.1). Uncertainties may 
also arise from the need for model calibration, 
different spatial scales, and bias correction of 
the estimated values prior to being used for 
water resources applications.

Sampling errors result from discontinuities 
in space and time between two consecutive sat-
ellite passages. In the case of precipitation esti-
mates, a satellite takes snapshots of the cloud 
fields (reflectivity) at specified times through-
out the day. Numerical algorithms are subse-
quently used to extrapolate those measurements 
in space and time to obtain daily totals. Retrieval 
errors stem from sources such as noise in the 
instrument measurements, improper calibra-
tion of the sensor, the sensor’s inability to delin-
eate rainy and dry areas, errors in the transfer 
of information between the satellite and the 

ground, and errors in the algorithms used, for 
instance, to convert brightness temperatures 
and radar signatures into amounts of precipita-
tion (Demaria et al. 2014). Additionally, coarse 
ground networks make the calibration of satel-
lite estimates difficult or even impossible in 
many regions around the world. 

Part III is organized as follows. Chapter 8 
discusses the main challenges of using ground 
observations to validate RS estimates of hydro-
logic variables, and describes the methodologi-
cal approach used to evaluate the reliability of 
RS products at different spatiotemporal scales. 
Chapter 9 evaluates the performance of RS 
products for measuring meteorological vari-
ables, and chapter 10 focuses on the use of 
remotely sensed variables in combination with 
hydrologic or hydrodynamic models for esti-
mating streamflow. Chapter 11 provides a syn-
thesis of the main take-home messages.
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Figure III.1 Main Sources of Uncertainty in Satellite-
Estimated Hydrologic Variables
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CHAPTER 8

Challenges of Remote Sensing 
Validation

INTRODUCTION 

An important challenge is how to reconcile 
remote sensing (RS) estimates with ground 
measurements, as they can be observations of a 
very different nature. For example, rain gauge 
measurements represent the rainfall in a few 
square centimeters—with a time interval or 
aggregation that varies from seconds to daily 
and a spatial characterization limited by the 
number of rain gauges—and are often not avail-
able in real time (especially in developing-
country settings). Satellite rainfall estimates are 
indirect measures (from infrared, passive 
microwave, or radar sensors), often having a 
spatial resolution1 ranging from 0.04° to 0.25°—
with a precipitation value representative of an 
area 16 and 625 square kilometers, respec-
tively—and time steps ranging from half an 
hour to three hours or a day. The different spa-
tial footprints of the reference data sets pose 
the most difficulties in evaluating and validat-
ing RS estimates. For this reason, the best rep-
resentation of “ground truth” is an assimilation 

of both types of data: (a) direct point observa-
tions of rainfall that makes it to the ground sur-
face and (b) radar and satellite estimates that 
provide the spatial distribution of the rainfall.

Thus validation efforts rely on reference 
data sets consisting of ground observations, 
radar or other satellite data, or a combination 
of observation types to measure and charac-
terize the errors in satellite estimates. In 
regions where the density of ground observa-
tions is high (mostly in the United States and 
some European countries), gridded precipita-
tion products from interpolated ground obser-
vation data are available, frequently at daily 
and monthly aggregations. However, in the 
absence of ground measurements of certain 
variables, RS data can also be evaluated against 
model-generated data, bearing in mind that 
model-generated data may contain signifi-
cantly more errors than ground observations. 
This is the case of values for evapotranspira-
tion or soil moisture content that have been 
estimated with hydrologic land surface mod-
els. In these cases, the hydrologic model has 
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from the initial selection, based on two criteria: 
(a) articles that used only ground observations 
for the validation process and (b) articles that 
used similar metrics to measure the errors in 
satellite estimates. This culling yielded the fol-
lowing selection: 24 articles about precipita-
tion, 19 articles about evapotranspiration (ET), 
17 articles about soil moisture, 19 articles about 
snow water equivalent and snow depth, and 15 
articles about surface water levels and 
streamflows. 

The uncertainty of the satellite estimates 
was grouped, when possible, by (a) temporal 
scale, ranging from daily to annual, (b) spatial 
scale, from point or cell to basin, and (c) vari-
ability on a global scale. A tabular summary of 
reliability indicators—the root mean squared 
error (RMSE), the bias, and the correlation 
coefficient (CC)—is presented for each key 
hydrologic variable. As pointed out, this review 
covered only scientific studies that used 
ground observations for the validation pro-
cess. Additionally, it included as many world-
wide validation sites as possible to obtain the 
geographic variability of the uncertainty.  

To unify the results and make meaningful 
recommendations, the bibliographic analysis 
focused on the magnitude-of-error indicators: 
RMSE, bias, and CC. These are usually defined 
as follows:2

RMSE 5 1
n  

n

 (St 2 Ot)2

t 5 1

 (8.1)

Bias 5 St 2 Ot, (8.2)

CC 5

 

n St Ot 2 St   Ot  

n  Ot
2  2  Ot

2

 n  St
2  2  St

2

 (8.3)

where St denotes satellite estimations and Ot 
denotes ground observations. Bias can also be 
expressed as a percentage of the observed value. 

been calibrated and validated for the region 
using available or proxy observations, but the 
errors contained in the output data may be sig-
nificant and need to be acknowledged. The 
use of model data (as a substitute for observa-
tions) for evaluation and validation purposes 
was not considered in this exercise. 

In a validation effort, different types of 
errors may be considered. For example, RS 
estimates of precipitation may contain three 
types of errors: missed events (no detection of 
events), false alarms (detection of rainfall not 
recorded on the ground), and errors in the rain 
rate magnitude of correctly detected rainfall 
events. However, the errors from ground mea-
surement networks should also be considered, 
and reference data sets need to be bench-
marked (Anagnostou et al. 2010). The true 
errors in satellite estimates are significantly 
lower when the errors in ground networks and 
the covariance between errors in the two types 
of observations are acknowledged (Ali, Lebel, 
and Amani 2005). For each type of hydromete-
orological variable considered, similar caveats 
apply to errors and limitations of both remote 
and in situ observations. All of these errors and 
potential limitations need to be accounted for 
in the evaluation and use of RS estimates.

METHODOLOGICAL APPROACH

The review of validation efforts of remote 
sensing (RS) estimates of key hydrometeoro-
logical variables proved challenging. The pub-
lications included and reviewed in this part use 
a wide range of metrics and approaches in 
their validation efforts for each case study’s 
location. Special attention was given to articles 
published in peer-reviewed scientific journals, 
which are indexed based on the impact of the 
cited research on the field of study. 

For the present review, 205 articles were 
initially selected from the scientific literature 
published in the last 11 years (2003–14). To 
facilitate comparisons, 94 articles were culled 
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NOTES

 1. National Aeronautics and Space Administration 
(NASA) missions that produce data parameters 
with a coarse spatial resolution typically report 
the resolution in geographic degrees or fractions 
of degrees. The size of a degree (or fraction of a 
degree) depends on how close the measured area 
is to the equator and the poles. The spatial area of a 
1° x 1° square (that is, 1° of latitude x 1° of longitude) 
gets smaller the closer you get to the poles. 

 2. RMSE measures the differences between (sample 
or population) values predicted by a model or esti-
mator and the values actually observed. The bias 
(of an estimator) is the difference between the 
estimator’s expected value and the actual value of 
the parameter being estimated. CC represents the 
degree of linear dependence of two variables and 
always lies between −1 and +1.
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Chapter 10 gives (a) an overarching view 
of validation efforts to date for each key vari-
able, (b) some indications regarding the con-
text in which these were carried out, and 
(c) a sense of the range of findings. Only the 
variables most relevant to hydrologic appli-
cations and water resources management 
were included: precipitation, evapotranspi-
ration, soil moisture, snow cover and snow 
water equivalent, water surface levels, and 
streamflow simulations using satellite-esti-
mated precipitation. 

The review of streamflow simulation 
applications in chapter 11 had to deal with the 
fact that most publications had used different 
hydrologic modeling approaches—lumped 
versus distributed models, different forcing 
variables and approaches for model calibra-
tion, raw versus bias-corrected satellite esti-
mates, and different model specificities—as 
well as varied geographic locations, including 
flat or mountainous terrain and diverse 
weather regimes. Thiemig et al. (2014) pro-
vide a good framework for the evaluation of 
RS applications for modeling streamflow.

Groundwater estimations were not included 
in the review because of their limitations 
(described in the section on groundwater in 
chapter 6). The Gravity Recovery and Climate 
Experiment (GRACE) mission developed by 
the National Aeronautics and Space Adminis-
tration and the German Aerospace Center can 
measure changes in the Earth’s mass at a 
monthly time step and at spatial scales of about 
250–300 kilometers, which yield spatial and 
temporal resolutions too coarse for planning 
and management purposes. However, aquifer-
level measurements are sparse, and validation 
efforts require the use of hydrologic models as 
ground truth (Wahr, Swenson, and Velicogna 
2006). Despite their limitations, satellite esti-
mations have been used successfully to analyze 
long-term trends in changes in groundwater 
levels on a regional or continental scale 
(Famiglietti et al. 2011; Feng et al. 2013; 
Frappart, Seoane, and Ramillien 2013).
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PRECIPITATION 

Precipitation is the input variable most com-
monly found in hydrologic applications and 
processes related to the water cycle. Histori-
cally, the main source of precipitation data has 
been observations from ground gauge networks 
and in some places, if available, from precipita-
tion radars. However, well- functioning ground 
networks are limited to the industrial coun-
tries and are extremely sparse in the underde-
veloped parts of the globe. Moreover, network 
densities are relatively low over thinly popu-
lated, high-latitude areas. Satellite-based pre-
cipitation estimates are naturally of most 
interest in those parts of the world where 
ground observation networks are sparse. This 
is even more true if the population density in 
those areas is relatively high (and thus highly 
vulnerable to hydrologic extremes), entailing 
relatively high water needs and use. 

Various precipitation products already 
exist that are either based exclusively on (visi-
ble, infrared, or passive microwave) satellite 

retrieval (Hsu et al. 1997; Huffman et al. 2001) 
or based on blended methods that use multi-
satellites and multi-sensors (Huffman et al. 
1997, 2007). This section evaluates the accu-
racy of satellite-based precipitation estimates 
based on the following products:

• Two products from the National Aeronau-
tics and Space Administration (NASA): 
Tropical Rainfall Measuring Mission 
(TRMM) and Multisatellite Precipita-
tion Analysis (TMPA) real-time product 
(TMPA 3B42RT) and TMPA 3B42

• One product from the Climate Prediction 
Center: the Climate Prediction Center 
MORPHing technique (CMORPH) 

• One product from the University of 
California, Irvine: Precipitation Estimation 
from Remotely Sensed Information Using 
Artificial Neural Networks (PERSIANN)

• One product from the Japan Science and 
Technology Agency (JAXA): Global Satel-
lite Mapping of Precipitation (GSMaP). 

Validation of Remote 
Sensing Data

CHAPTER 9
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Extreme Precipitation Events
In data-poor regions where intense storms are 
responsible for substantial economic losses, 
large numbers of displaced people, and a flood-
related death toll, satellite estimations of pre-
cipitation would be very valuable for the study 
and monitoring of such destructive meteoro-
logical phenomena. However, based on three-
hour satellite estimations, Mei et al. (2014) find 
that warm-season extreme precipitation val-
ues (that is, those above the 90th percentile) 
are poorly correlated with ground observa-
tions—correlation values ranging from 0 for 
CMORPH to 0.51 for TMPA 3B42RT v7. Dur-
ing the cold season, the correlation is even 
weaker, with an average value of 0.16. The 
RMSE values range from 0.38 to 0.98  millimeter 
during the warm season and from 0.54 to 
0.86 millimeter during the cold season. 

TMPA 3B42 systematically underestimates 
the magnitude of tropical cyclones in Australia 
by −15 percent for rainfall intensities in the range 
of 50–75 millimeters per day and by −40 percent 
for intensities higher than 200 millimeters per 
day (Chen et al. 2013). Similarly, for tropical 
cyclones in the southeastern United States, 
TMPA products 3B42 and 3B42RT show biases 
in the ±25 and ±50  percent range of observa-
tions, respectively (Habib, Henschke, and Adler 
2009).2 In southeastern South America, where 
the most intense precipitation on Earth has 
been documented (Zipser et al. 2006), satellite 
products fail to capture the magnitude of aver-
age precipitation of meso-scale convective sys-
tems—thunderstorm systems with a spatial 
range of 100 kilometers or more. In the case of 
“pure” satellite products, the CMORPH esti-
mate biases range from −70 to +60 millimeters 
per day, while the PERSIANN estimate biases 
range from −55 to +25 millimeters per day. Even 
the TMPA 3B42 rainfall estimates show biases 
in the range of −60 to +50 millimeters per day. 
This is surprising since this satellite product is 
routinely bias-corrected using ground observa-
tions. This suggests that, at least in certain 
regions of the world, this post-processing 

Table 9A.1 in annex 9A (available online at 
https://openknowledge.worldbank.org/handle 
/10986/22952) presents key aspects of the sat-
ellite products used in the validation process of 
the scientific literature reviewed. For each 
journal article reviewed, the table gives the 
geographic location of the validation site, the 
temporal scale (that is, daily, monthly, annual, 
or seasonal), and the magnitude of the root 
mean squared error (RMSE), bias, and correla-
tion coefficient (CC). 

Orographic Effects on Estimated  
Precipitation
In mountainous areas, satellite sensors have 
trouble capturing orographic precipitation 
and the effects of rain shadow. In addition, as 
ground networks are sparse or nonexistent 
in such areas, sensor calibration and valida-
tion are difficult. In the western Black Sea 
region of Turkey, where the complex topog-
raphy is a major factor in the genesis of pre-
cipitation, studies have found that the volume 
of monthly precipitation is 50 percent less 
(within a 50-kilometer range) on the leeward 
(drier) side of the mountain range than on 
the windward (wetter) side, due to the rain 
shadow effect (Derin and Yilmaz 2014). On 
average, satellite products tend to underesti-
mate observations on the windward side of 
mountains by −18 percent (negative bias) 
during the warm and dry  season and by as 
much as −53 percent during the cold and 
humid season. Satellites tend to overestimate 
precipitation observations, with the excep-
tion of CMORPH estimates, on the leeward 
side, on average, by +2  percent during the 
warm season and by +25 percent during the 
cold season.1 Since warm orographic pro-
cesses cannot always be detected by passive 
microwave or infrared sensors (Dinku et al. 
2007), biases in daily products range from 
−9.5 (warm season) to −51.8  percent (cold 
season) on the windward side and from 
+7.25 percent (warm season) to +38.3 percent 
(cold season) on the leeward side.

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
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storms), with values ranging from 0.19 to 0.72 
and a median value of 0.32 (figure 9.1, blue col-
umn). Winter storms, which are characterized 
by warm top clouds with insufficient ice for sat-
ellite sensors to detect precipitation, are respon-
sible for satellite misses and an increase in the 
number of false alarms. For more intense pre-
cipitation (higher than 20  millimeters per day), 
satellite products show biases during the sum-
mer, especially in the mid-latitude regions, 
because they cannot observe the rapid temporal 
evolution of most convective storms (Ebert, 
Janowiak, and Kidd 2007).

Summary
The findings for the validation of precipitation 
products are as follows:

• In regions of complex topography, such as 
mountainous regions, satellite products 
tend to underestimate precipitation on 
the windward side of the mountain (−18 
and −53 percent during the warm-dry and 
cold-wet season, respectively) and to over-
estimate precipitation on the leeward side 
(+2 and +25 percent during the warm-dry 
and cold-wet season, respectively).

• Satellite products have trouble estimating 
extreme precipitation events such as tropi-
cal and subtropical storms, with biases of 
±25 and ±50 percent for the TMPA prod-
ucts 3B42 and 3B42RT, respectively.

• Satellite sensors are better at capturing 
convective, summer precipitation in the 
tropics and midlatitudes (CC ranges from 
0.35 to 0.85, with a median of 0.65) than 
winter precipitation (CC ranges from 0.19 
to 0.72, with a median of 0.32), which is 
usually of a nonconvective nature. 

EVAPOTRANSPIRATION

Evapotranspiration (ET)—through evapora-
tion from the soil, rainfall intercepted by plants, 
and plant transpiration—is a key component of 

correction does not necessarily offer much of an 
improvement over the uncorrected data sets 
(Demaria et al. 2011). 

Seasonal Precipitation
In Australia, infrared–passive microwave sat-
ellite products such as TMPA 3B42RT, 
 CMOPRH, and PERSIANN have performed 
better in the tropics during the summer 
months (December–January), when rain is 
mostly of a convective nature, than in midlati-
tudes, where the accuracy of satellite sensors 
deteriorates slightly. Since several validation 
studies have been performed at the seasonal 
level, figure 9.1 shows the correlation coeffi-
cient between infrared–passive microwave 
satellite products and ground observations 
for the summer and winter, respectively, 
based on a subset of the summary data pro-
vided in table 9A.1 in annex 9.A (available 
online). Three-hourly, daily, monthly, and 
annual validation correlation coefficients are 
not included in the plot. 

During summertime, correlation coefficients 
range from 0.35 to 0.85, with a median value of 
0.65 (figure 9.1, green column).3 In the winter 
months, they deteriorate slightly (most likely 
because of the nonconvective nature of winter 
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Figure 9.1  Correlation Coefficients between 
Observed and Satellite-Estimated Precipitation

Note: The satellite products used include CMORPH, PERSIANN, 
GPROF 6.0, RFE 2.0, and TMPA 3B42 (both v6 and v7). n = sample size. 
The black horizontal line in both columns represents the median value.
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different spatial scales (Jiménez, Prigent, and 
Aires 2009; Jiménez et al. 2011; Mueller et al. 
2011, 2013). 

Validation of Remotely Sensed  
ET Estimates
Table 9A.2 in annex 9A (available online) pres-
ents a comparative summary of different ET 
estimates. In general, satellite products derived 
on a monthly time scale have stronger agree-
ment with ground observations than those 
derived on a daily basis. Moreover, estimates 
show better agreements in humid (subtropical) 
than in arid and semiarid regions, as shown for 
the African continent, where ET products sys-
tematically overestimate reference values 
(Trambauer et al. 2014). However, the uncer-
tainty band ranges from −30 percent underesti-
mation to +20 percent overestimation, most 
likely as a result of model  deficiencies—more 
specifically, the failure to account fully for 
changes in soil moisture resulting from plant 
transpiration and forest rainfall  interception 
(Miralles et al. 2011). The  RMSE  ranges from 
0.26 millimeter to 3 millimeters per day, with an 
average value of 0.94 millimeter per day and a 
standard deviation of 0.73  millimeter per day. 
Comparisons with ground observations (flux 

the coupling between the atmosphere and the 
Earth surface. In most ET estimation methods, 
the driving parameter is net radiation, and the 
vapor pressure deficit is used to calculate water 
vapor transfer. In recent years, several ET data 
sets have been developed based on in situ 
ground data or satellite retrievals. Satellite 
imagery, increasingly available at fine spatial 
and temporal resolutions, has generated infor-
mation that has allowed the development of 
ET estimation schemes. While satellite remote 
sensing provides reasonable estimates of dif-
ferent land surface fluxes, it does not measure 
evapotranspiration directly. Instead, the scien-
tific community relies on retrieval algorithms 
to integrate those fluxes and simulate evapo-
transpiration’s variability. 

Several methods, of different degrees of 
complexity, have been developed using 
schemes that balance empirical and physically 
based components. The simplest method 
(direct method) uses thermal infrared to infer 
temperature in the atmosphere, which is then 
used along with ground temperature measure-
ments to estimate ET rates. These methods are 
sensitive to cloud conditions and to errors in 
the ground- and satellite-measured tempera-
ture values. Deterministic methods use  
soil-vegetation-atmosphere transfer (SVAT) 
models, which can potentially be linked to cli-
mate and hydrologic models, but require accu-
rate RS estimates of evapotranspiration and 
the estimation of several model parameters. 
SVAT models and RS data can be combined 
into more complex data assimilation processes 
(Courault, Seguin, and Olioso 2005).

As is the case of most hydrometeorological 
variables estimated with satellites, the lack of 
ground reference data is one of the main cul-
prits of the estimates’ uncertainty (Wang and 
Dickinson 2012). To mitigate the impact of the 
lack of observations, an international initiative 
was launched in the previous decade to evalu-
ate and compare existing land ET products.4 
The project aims to create a global, multiyear 
benchmark data set of evapotranspiration at 
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Figure 9.2  Correlation Coefficients 
between Observed and Satellite-Estimated 
Evapotranspiration 

Note: n = sample size. The black horizontal line in the column 
 represents the median value.
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required to validate satellite products and 
introduce significant sampling uncertainty 
(Crow et al. 2012).

The theoretical basis for using remote sen-
sors to measure soil moisture content is based 
on the contrast between the dielectric proper-
ties of the dry soil material and the water. Water 
has a large dielectric constant (of about 80); 
when this is added to the dry soil matrix (dielec-
tric constant of about 4), the soil’s dielectric 
constant rises significantly and the emission 
and scattering properties of the soil change (de 
Jeu et al. 2008). The validation of RS soil mois-
ture is challenging due to the disparity between 
the spatial scales of the satellite and those of in 
situ observations. Conventional soil moisture 
observations provide point measurements, 
while satellite observations provide estimates 
covering a much larger spatial area (Su et al., 
2011 and 2013). Moreover, soil moisture has a 
relatively large spatial and temporal variability, 
related to the presence or absence of vegetation 
coverage. Soil emissions tend to be attenuated 
by the vegetation canopy, resulting in decreased 
sensitivity of sensors to variations in soil mois-
ture. Extremely dry soils, such as are found in 
desert regions, can also introduce uncertainty in 
the sensors’ measurements because of higher 
backscatter (de Jeu et al. 2008). Examples of 
soil moisture sensors aboard different satellites 
are provided in table 6.6 in chapter 6.

Validation of Remotely Sensed Soil 
Moisture Estimates
Table 9A.3 of annex 9A (available online) 
shows the results of validation efforts using 
satellite-estimated soil moisture and ground 
observations from intensive field campaigns 
and existing networks in Australia, France, 
Italy, Spain, and the United States as well as in 
Asia and West Africa. The RMSE values7 range 
from 0.01 to 0.36 cubic meter of water per 
cubic meter of soil (m3/m3) and have a mean 
value of 0.11 (±0.09) m3/m3. However, most 
RMSE values are small (figure 9.3, panel a), as 
69 percent of the studies evaluated have RMSE 

towers) worldwide suggest a robust linear cor-
relation (median value of CC = 0.83) between 
satellite-estimated ET and ground observations 
( figure 9.2), despite the large biases.5 

Summary
The findings for the validation of evapotrans-
piration products are as follows:

• Satellite observations can estimate the 
main drivers of evapotranspiration (tem-
perature, latent heat, sensible heat) on a 
global scale and thus can be very valuable in 
meeting the need for global ET estimates. 

• However, large discrepancies in the esti-
mates indicate that land evapotranspira-
tion is, and will remain, one of the most 
uncertain components of the water bal-
ance, with biases ranging from −30 to +10 
percent and average RMSE values of 0.94 
millimeter per day (±0.73).

SOIL MOISTURE 

Soil moisture—water stored in the soil— controls 
the partitioning of available energy into sensi-
ble and latent heat fluxes and influences the 
evolution of weather and hydrologic processes 
in a basin. In recent decades, soil moisture has 
routinely been estimated with several satellite 
sensors (Dorigo et al. 2010). However, the lack 
of soil moisture observations that can be used 
for validation remains a fundamental problem. 
To address this issue, an international network 
has been created to support efforts aimed at 
establishing and maintaining a global in situ 
soil moisture database, which is essential for 
the scientific community to be able to validate 
and improve global satellite observations.6 
Typically, existing and planned ground-based 
soil moisture networks cover areas ranging 
from 100 square kilometers to 10 million 
square kilometers. However, because of the 
spatial variability of observed soil moisture, 
coarser networks often lack the resolution 
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correlation coefficients larger than 0.7 and 
40 percent of the sites have correlation coeffi-
cients larger than 0.6. Figure 9.4 shows the dis-
tribution of the correlation coefficients 
grouped by type of sensor (passive, active, and 
combined). While the correlation coefficients 
of the active sensors show slightly less disper-
sion than those of the passive sensors, both 
types of sensors have similar mean CC values, 
indicating that, for the studies included in this 
report, both methods are comparably effective 
at retrieving soil moisture data from space. Su 
et al. (2011, 2013) provide additional examples 
of RS soil moisture validations, focusing on the 
Tibetan Plateau.

Summary
The findings for the validation of soil moisture 
are as follows:

• Satellite estimates are only representative 
of the top 5 centimeters of the soil layer, 
which can limit their applicability.

• Lack of ground observations limits 
 satellite-derived estimate validation to a 
few locations and to special field campaigns.

• The soil moisture satellite products ana-
lyzed yielded a mean RMSE of 0.11 (±0.09) 
m3/m3 and a mean positive bias of 0.04 
(±0.05) m3/m3.

• RS estimations of soil moisture are promis-
ing, considering the mean correlation coef-
ficient of 0.58 (±0.19).

SNOW COVER AND SNOW  
WATER EQUIVALENT

Accurate information on snow in the winter-
time is an important component of spring and 
summer soil moisture predictions. The actual 
values of these parameters, in turn, have an 
impact on precipitation patterns, hydrologic 
extremes (floods and droughts), wildlife dynam-
ics, and water supply. Natural ecosystems rely 

values less than 0.15 m3/m3. Satellite estimates 
tend to overestimate the value of observations, 
as shown by the mean positive bias of 0.04 
(±0.05) m3/m3.  As is the case with the RMSE, 
biases range from −0.09 to 0.13 m3/m3, with 
82 percent of the validation sites showing posi-
tive values (figure 9.3, panel b). 

The correlation coefficients between obser-
vations and RS estimates range from 0.11 to 
0.96. Despite a mean CC value of 0.58 (±0.19), 
around 15 percent of the validated sites have 
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and Terra satellites. An example of a fractional 
product is the MYD10A1 Fractional (Rittger, 
Painter, and Dozier 2013), which has the advan-
tage that its estimates of snow depth can be 
directly compared with ground observations. 
In contrast, binary estimates are validated using 
a so-called contingency matrix (also called a 
confusion matrix), which counts the number of 
coincidences between satellite and ground 
measurements of “snow” and “no snow.” The 
National Oceanic and Atmospheric Adminis-
tration’s Advanced Very High Resolution Radi-
ometer (AVHRR) and the U.S. Air Force 
Defense Special Sensor Microwave Imager 
(SSM/I) also offer fractional satellite products.

Validation of Remotely Sensed Snow 
Cover and Snow Water Equivalent 
 Estimates
Table 9A.4 of annex 9A (available online) sum-
marizes the errors recorded in satellite-esti-
mated snow cover and snow water equivalent 
for different satellite products. In densely for-
ested areas of Canada, the uncertainty of satel-
lite products ranges from −25 to +10 percent 
(Foster et al. 2005). In these areas, a dense for-
est canopy diminishes the ability of the satel-
lite to determine the amount of snow 
underneath it. 

Despite the lack of agreement on the magni-
tude and sign of the errors, the linear correla-
tion between ground observations and satellite 
estimations for the 15 studies included in this 
analysis has a median value of 0.53 (±0.22) 
( figure 9.5, panel a). The RMSE ranges from 13 
to 75 millimeters, with a mean value of 32.3 mil-
limeters (±20.2). A mean negative bias of 
−4.4 millimeters indicates that satellites under-
estimate observations. However, the bias 
shows a high variability and has a standard 
deviation of 26.7 millimeters.8

By contrast, snow cover products compare 
favorably with ground observations, thanks to 
improvements in spatial and temporal resolu-
tion and in cloud mapping. Figure 9.5, panel b, 
shows that the median agreement value, or 

heavily on spring streamflows for important 
transitional stages in their life cycle. Despite 
their importance for natural resources manage-
ment, in situ snow measurements are sparse, 
and given the high spatial variability in snow 
distribution, remote sensing constitutes an 
invaluable source of global spatially distributed 
snow estimates. 

Uncertainty in RS-derived snow estimates, 
in addition to sampling and retrieval errors, 
results from snow reflectance, forest transmis-
sivity, forest reflectance (of an opaque canopy), 
and snow-free ground reflectance for different 
classes of land cover (Dong, Walker, and 
Houser 2005). In addition, cloud cover has a 
large impact on the overall accuracy of satellite-
derived snow cover estimates. For example, 
Maurer et al. (2003) report that the accuracy of 
the MODIS daily snow cover mapping algo-
rithm under clear sky conditions is more than 
80 percent. To reduce the impact of cloud 
cover on snow, cloud masks are routinely 
developed to identify the areas where land 
products should be retrieved based on the 
amount of cloud obstruction (Hall et al. 2002). 

Validation studies indicate that satellite 
sensors have higher accuracy in plains areas, 
with little or no forest cover, than in forested 
areas in the northern latitudes. The forest 
cover masks the emission of microwaves by 
snow. As is the case of precipitation estimates, 
complex topography significantly affects the 
quality of snow data retrieval. 

Unlike the satellite-derived estimates dis-
cussed above, satellite sensors can estimate 
snow cover and snow water equivalent in two 
ways: (a) as binary estimates (that is, snow or 
no snow), where the sensor only detects the 
presence or absence of snow on the ground 
(but cannot estimate depth of snow or snow 
water equivalent), and (b) as fractional esti-
mates of snow-covered area, based on mixing 
different satellite spectral bands. 

Satellite estimates available in a “binary” for-
mat are MOD10A1 and MYD10A1 Binary, both 
derived from the MODIS on board the Aqua 
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• Since the largest snow accumulations 
occur at higher elevations, sparsely distrib-
uted snow stations contribute significantly 
to the uncertainty.

• The high accuracy of satellite sensors in 
detecting the presence of snow on the 
ground is partially due to improvements in 
cloud mapping techniques. Ongoing efforts 
to combine satellite estimates with ground 
observations have the potential to reduce 
the uncertainty in future products. 

SURFACE WATER LEVELS AND 
STREAMFLOWS

Since stream gauges are distributed sparsely 
around the globe, using remote sensing to 
characterize river flow is extremely useful in 
river basins with extensive flood plains, in wet-
lands, and in braided rivers, where multiple 
river channels make it prohibitive to install 
several gauging stations. Satellite estimates of 
surface water levels are also useful for flood 
forecasting, especially in transboundary river 
basins, where the hydrologic information gen-
erated from upstream areas in the basin is not 
shared with the downstream partners (Bianca-
maria, Hossain, and Lettenmaier 2011). In 
regions where ground-based data are difficult 
to obtain due to funding shortages or political 
unrest, satellite data may be available in near 
real time for implementation in flood forecast-
ing models (Coe and Birkett 2004). 

 Satellite sensors can estimate surface water 
levels in rivers and wetlands by using the high 
reflectivity of water. Therefore, unless the 
microwave pulses emitted by water bodies are 
intercepted by vegetation, small changes in 
water-level depths can be measured with cen-
timeter-scale accuracy (Alsdorf and Lettenma-
ier 2003). The Ocean Topography Experiment 
(TOPEX)/Poseidon mission and the Japanese 
Earth Resources Satellite 1 (JERS-1) synthetic 
aperture radar (SAR) mission carry onboard 
radar altimeters designed to operate over 

accuracy, of estimated snow cover is 70 per-
cent (sample size = 24). The standard deviation 
of estimated snow cover for the products 
reviewed is 23.3 percent, indicating that binary 
satellite products are quite effective at deter-
mining whether there is snow on the ground. 

Summary
The findings for the validation of snow cover 
and snow water equivalent are as follows:

• The uncertainty in satellite estimates of 
snow water equivalent and snow depth is 
still high for the available products. The 
RMSE between observed and satellite- 
estimated snow water equivalent has a 
mean value of 32.3 millimeters (±20.2). 
Satellite estimates tend to underestimate 
observations by −4.4 millimeters, on aver-
age. Moreover, the bias has a relatively 
high variability and a standard deviation of 
26.7 millimeters. 

• Satellites can successfully estimate ground 
snow cover, as reflected by the 70 percent 
(±23) agreement of satellite products with 
ground observations.
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to 1.5 meters. The results suggest that the accu-
racy of the estimates is larger during periods 
with high water levels: 2 percent RMSE9 for 
Lake Chad in Africa and 15-centimeter RMSE 
for wetland flooding in the Amazon River 
basin. During the rest of the year, the errors are 
as high as 10 percent in Lake Chad and −2.2 
meters in the Amazonian wetlands (Birkett 
2000; Hess et al. 2003). 

Recent work by Hossain et al. (2014) has 
demonstrated the feasibility of implementing a 
five-day lead time water-level forecast system 
in the Brahmaputra River basin using Jason-2 
estimates. Altimetry measurements to forecast 
stages used to force a hydrodynamic model 
inside Bangladesh yield forecast results with 
RMSE values ranging from 0.2 (± 0.2) meters 
for the monsoon season and 0.7 (± 0.4) meters 
for the dry season, when compared with a pos-
terior “nowcasting” using observed stages. 
These results strongly suggest that in large riv-
ers, water-level altimetry measurements can 
be used as inputs for hydrodynamic flow prop-
agation models and thus can be especially use-
ful in transboundary settings.  

Despite the successful implementation of 
the system in Bangladesh, table 9A.5 shows 
that satellite estimates of river water levels 
have RMSEs ranging from 0.27 meter to 
1.1 meters, which can be considered poor when 
compared with ground-based gauge measure-
ments. However, these values do allow com-
parison of the interannual and seasonal 
variability of water heights across the basin 
(Birkett et al. 2002).

Summary
The findings for validation of surface water 
and streamflow are as follows:

• The uncertainty in satellite estimates of 
water surface is still high for the available 
products. The RMSE in lake water levels is 
0.22 (±0.45) meter, on average, with greater 
accuracy during periods with high water 
levels. 

water and ice surfaces. An altimeter radar con-
tinuously emits microwave pulses toward the 
surface of the Earth, and the time that passes 
between the pulse emission and the echo 
reception is used to estimate the height of the 
topographic surface (Birkett 1998; Hess et  al. 
2003).

Streamflows cannot be measured from 
space. Instead, satellite sensors can measure 
water levels, channel width, channel slope, and 
flow velocity, among others, and models or sta-
tistical relationships between these variables 
can then be used to estimate channel flows 
(Bjerklie et al. 2003). In addition, infrequent 
satellite overpasses, limited sampling fre-
quency (determined by the distance between 
measurements along the satellite orbit), and 
incomplete spatial coverage make estimations 
uncertain. One of the main constraints is the 
need to use hydraulic models (or statistical 
correlations) (a) to route water levels along the 
river channel to compare gauge-height obser-
vations with satellite measurements in virtual 
stations (points where the satellite altimeter 
measurements are taken), as these rarely coin-
cide with the location of a gauging station, and 
(b) to propagate water levels downstream to 
forecast flows for the areas of interest.

Validation of Remotely Sensed Surface 
Water Level Estimates 
The most widely used satellites for estimating 
streamflow are the TOPEX/Poseidon mission 
developed by NASA and the French Space 
Agency, the JERS-1 SAR developed by JAXA, 
GRACE developed by NASA and the German 
Aerospace Center, and Envisat (no longer 
operational) developed by the European Space 
Agency.

Changes in the water level of lakes and wet-
lands can be estimated by remote sensing with 
relatively high reliability (see table 9A.5 of 
annex 9A, available online), as evidenced by a 
median correlation coefficient of 0.96 (±0.24). 
The error in lake water levels is 0.28 (±0.45) 
meter on average and can range from 0.04 meter 
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Annex 9A is available online at https://open 
knowledge.worldbank.org/handle/10986 
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NOTES

 1. These average values are based on the paper by 
Derin and Yilmaz (2014) and are not shown in 
table 9A.1 in annex 9A (available online).

 2. These real-time products are described in table 
6.3 in chapter 6.

 3. The values shown were taken from table 9A.2 in 
annex 9A (available online). The winter and sum-
mer values were analyzed (and are shown) sepa-
rately to highlight the seasonal differences in the 
correlation coefficient. 

 4. For information on this initiative, see http://www 
.iac.ethz.ch/groups/seneviratne/research/Land 
Flux-EVAL.

 5. The RMSE values expressed in millimeters per 
day do not say much about the performance  
of the RS estimates. For that reason, the figures 
in this section only highlight the correlation 
coefficient.

 6. For information on the network and efforts to 
 create a soil moisture database, see http://ismn 
.geo.tuwien.ac.at/ismn/.

 7. In this context, only RMSE values with m3/m3 
units are considered.

 8. Many of the reviewed journal articles pro-
vide a range of values, and the means of those 
ranges were used to arrive at these figures. The 
underlying values are not shown in the tables of 
annex 9A.

 9. While the RMSE is usually expressed in the unit 
of the dependent variable, it can also be expressed 
as a percentage.
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INTRODUCTION 

In recent decades, remote sensing (RS)–derived 
precipitation data have become increasingly 
available at temporal and spatial scales that are 
useful for hydrologic purposes such as stream-
flow monitoring and forecasting, drought fore-
casting, and water resources management 
(WRM). While chapter 10 reviews error evalu-
ation and validation efforts of specific satellite 
products, this chapter focuses on the evaluation 
of errors in streamflow estimates obtained 
using remotely sensed variables, such as pre-
cipitation and water surface elevation, in com-
bination with hydrologic or hydrodynamic 
models.  

Due to the highly nonlinear responses in 
the hydrologic cycle, errors in RS-derived pre-
cipitation estimates can be amplified in some 
fluxes (evapotranspiration, streamflows) and 
dampened in others. Methods to improve the 

performance of satellite-driven simulated 
streamflows include (a) bias correction (remov-
ing biases) of satellite estimates prior to run-
ning a hydrologic model and (b) recalibration 
of hydrologic models using satellite rainfall 
inputs. Calibration of hydrologic models 
accounts for many factors beyond parameter 
values, such as structural model inadequacies, 
availability of spatial and temporal input, and 
errors in input data. Thus in order to obtain 
optimal simulation results, it is necessary to 
calibrate hydrologic models with the bias- 
corrected RS estimates that will be used to run 
such models for monitoring or predictive pur-
poses (Serrat-Capdevila et al. 2013).

This chapter reviews the errors in stream-
flow estimates obtained from two approaches: 
(a) rainfall-runoff modeling using satellite 
rainfall estimates and other meteorological 
variables and (b) water-level altimeter 
 measurements and hydrodynamic models. 

Validation of Streamflow 
Outputs from Models Using 
RS Inputs

CHAPTER 10
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basins in Australia, Brazil, and the Republic of 
Korea, ranging in size from 32 to 6,500 square 
kilometers. They compare statistics at monthly, 
10-day, and daily intervals. They report that 
performance statistics are worse for daily 
 simulations using satellite products than for 
simulations using rain gauges, except in a few 
cases, where both types of simulations some-
times perform equally well. They also find that 
the magnitude of errors increases as basins get 
smaller.

Gourley et al. (2011) evaluate streamflow 
simulations using real-time rain gauges, a denser 
Micronet gauge network, radar (unadjusted and 
stage IV, that is, gauge adjusted), Precipitation 
Estimation from Remotely Sensed Information 
Using Artificial Neural Networks-Cloud Classi-
fication System (PERSIANN-CCS), and Tropi-
cal Rainfall Measuring Mission-real time 
(TRMM-RT) (figures 10.1–10.3). They argue 
that recalibration based on potentially biased 
satellite data would “yield better simulations for 
the wrong reasons” and that it is better to cali-
brate the model using ground observations of 
rainfall data. This argument can be reversed 
easily to defend the use of satellite data rather 
than ground data for the purpose of calibration, 
as a model in principle always tends to produce 
better results when run with the same forcing 
data as were used in its calibration. In addition, 
how many rain gauges are needed to represent 
the truth accurately over the entire basin? As 
calibration addresses a range of issues and 
attempts to compensate for errors in the input 
data (present in either satellite or ground obser-
vations), for optimal performance, hydrologic 
models are ideally calibrated with the type of 
forcing data they will be using in simulations 
(Serrat-Capdevila et al. 2014). The framework 
proposed by Thiemig et al. (2013) demonstrates 
this argument and is the one to use.

PERSIANN-CCS yields streamflows with a 
very small fractional bias (figure 10.1, panel b), 
but a root mean squared error (RMSE) compa-
rable to that of TRMM-RT (figure 10.2, panels c 
and d). The relatively small fractional bias could 

A synthesis of the results reported in the litera-
ture is presented in table 9A.6 (in annex  9A, 
available online at https://openknowledge 
.worldbank.org/handle/10986/22952), When 
evaluating the  performance of streamflow sim-
ulations, three main errors have to be analyzed: 
the bias (errors in the mean), differences in 
variability (errors in representation of the 
observed variability), and correlation errors 
(errors in the timing of simulated responses or 
events). These errors can be mathematically 
expressed in several metrics (which vary 
across the  literature). In order to gain an 
understanding of the sources and nature of 
errors in hydrologic simulations, Gupta et al. 
(2009) decompose the mean squared error 
into three terms: the error in mean, the error in 
variance, and the error in correlation: 

MSE 2so1  (so)2  (so)2, 
 (10.1)

where s is the mean of the satellite estimates; 
o is the mean of the ground observations; s is 
the standard deviation of the satellite esti-
mates; 0 is the standard deviation of the 
ground observations; and  is the correlation 
coefficient (CC) between satellite data and the 
reference observed data.

In a study of three satellite precipitation 
products (SPPs) over the African continent, 
Serrat-Capdevila et al. (2016) show how bias 
correction of satellite precipitation can correct 
errors in the mean and variance terms of pre-
cipitation, but not in the correlation term. 

STREAMFLOW SIMULATIONS 
USING RAINFALL-RUNOFF 
MODELING

Tobin and Bennett (2014) use the Tropical 
Rainfall Measuring Mission (TRMM) Multisat-
ellite Precipitation Analysis (TMPA) 3B42 
(research product, nonreal time) and the 
 Climate Prediction Center MORPHing tech-
nique (CMORPH) to force simulations in 10 

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
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Figure 10.1 Fractional Bias of Streamflow Simulations Forced by Rainfall Algorithms

be the result of many errors (including false 
alarms and missed events) that compensate 
each other when aggregated. Thus it can be 
accompanied by a high RMSE, which still indi-
cates poor performance.

The improved performance, in terms of 
Micronet-relative efficiency (MRE)—that is 
improvements over using Micronet—for 
TMPA 3B42RT was achieved by recalibrating  
the model at the resolution of TMPA (0.25° 

and three hours), but still using rain gauge 
values as calibration forcing. As a result, the 
MRE improved to −10 from an MRE of −30 
and −40, depending on the magnitude of dis-
charge (no improvement was seen in the 
RMSE or in the bias). The MRE of PERSIANN-
CCS ranged from −17 to −25,  performing bet-
ter than the original runs with 3B42RT 
(before model recalibration at 0.25° and 
three-hour resolution).

Source: Adapted from Gourley et al. 2011. © American Meteorological Society (AMS). used with permission. Further permission required for reuse.

Note: The rainfall algorithms used are indicated in the legend for each panel. Scores are plotted as a function of flow exceedance threshold.
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Figure 10.2 RMSE of Streamflow Simulations Forced by Rainfall Algorithms

Hossain and Anagnostou (2004) examine 
the impact of passive microwave rainfall 
retrieval frequency and sampling errors on 
flood prediction uncertainty in a medium-size 
basin in northern Italy using a semi-distributed 
hydrologic model. Regarding temporal sam-
pling frequencies, they find that three-hour 
rainfall retrievals yield similar flood prediction 
uncertainties as do hourly inputs, but the 
 six-hour rainfall retrievals amplify the runoff 

prediction error by a factor of three. Extending 
these results to short-duration, extreme flood-
producing storms is one goal of the Gourley 
et al. (2011) study. Sangati and Borga (2009) find 
that spatial rainfall aggregation has a significant 
effect on simulations of peak discharge for 
extreme flooding events. 

Gourley et al. (2011) also show that seasonal 
performance and statistics are not representa-
tive of extreme events: all satellite products 

Source: Adapted from Gourley et al. 2011. © American Meteorological Society (AMS). used with permission. Further permission required for reuse.

Note: The rainfall algorithms used are indicated in the legend for each panel. Scores are plotted as a function of flow exceedance threshold.  
RMSE = root mean squared error.
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Thiemig et al. (2013) evaluate simulations in 
two African basins (Volta and Baro-Akobo) and 
four sub-basins with various SPPs using the 
Kling-Gupta efficiency (KGE), an error metric 
that combines three components—bias, vari-
ability, and correlation (Kling, Fuchs, and 
 Paulin 2012)—as follows:

KGE  1   (r  1)r  (  1)2  (  1)2  

 (10.2)

perform very poorly for a 500-year extreme 
event. The ranking of simulation performance 
from the seasonal analysis actually reverses for 
the extreme event. They do not address why 
recalibrating the model—by aggregating the 
reference data set to the resolution of the satel-
lite product—improves the simulations.  This 
is likely due to the averaging of errors and 
parameters in the coarser resolution of the sat-
ellite product.

Figure 10.3 Relative Efficiency of Streamflow Simulations Forced by Rainfall Algorithms
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190  |  P A R T  I I I :  V A L I D A T I O N  O F  R E M O T E  S E N S I N G – E S T I M A T E D  H Y D R O M E T E O R O L O G I C A L  V A R I A B L E S

5. Running simulations with bias-corrected 
SPP-specific calibration (to determine the 
combined benefits of bias-correction and 
SPP-specific recalibration). 

In the lowlands, performance is good or 
intermediate for African Rainfall Estimation 
Algorithm Version 2 (RFE2) and TRMM, but 
poor for CMORPH and PERSIANN. In the 
mountainous basin, CMORPH performs bet-
ter. Most of the poor and very poor perfor-
mance can be attributed to bias and variability 
(errors in mass balance and shape of 
distributions). 

CMORPH and PERSIANN clearly benefit 
strongly from both bias correction and model 
recalibration, and these processes correct 
mainly the bias term. In other words, CMORPH 
and PERSIANN contain significant biases that 
can be corrected. Bias correction is more effec-
tive than recalibration (which is unable to cor-
rect mass balance) at correcting products with 
large biases and yielding improved simula-
tions. For products without large biases, model 
recalibration yields more significant improve-
ments than bias correction, an intuitive result. 
Finally, as recommended by Serrat-Capdevila 
et al. (2013), the combined use of bias correc-
tion and recalibration of hydrologic models 
with bias-corrected SPP data yields the best 
possible performance.

In a flow-forecasting system for the Yellow 
River—a Sino-Dutch cooperation project—
Rosema et al. (2008) use RS data (from hourly 
visual and thermal infrared bands) for river 
basin management, including energy and 
water balance, drought monitoring, and flow 
and flood forecasting. This large project has 
custom-made satellite precipitation retrievals 
and modeling as well as a forecasting system. 
The means employed for this project probably 
go beyond the resources of most similar stud-
ies. The water resources forecasting system 
(flow forecasting) yields correlations of 0.8 to 
0.94 for the sub-basins, with Nash-Sutcliffe 
efficiency (NSE) coefficients of 0.77 to 0.84.1 

 
s
o

 (10.3)

 
CVs s/ s
CVo o/ o

 , (10.4)

where s is the mean of the satellite estimates; 
o is the mean of the ground observations, s is 
the standard deviation of the satellite estimates; 
o is the standard deviation of the ground 
observations; r is the linear correlation (Pear-
son product-moment) coefficient between sat-
ellite data and the reference observed data;  
the bias ratio; and  is the variability ratio 
between the coefficients of variation, CV.

They use a structured approach to bench-
mark improvements in the simulation’s perfor-
mance in those two basins: 

1. Calibrating the hydrologic model with 
interpolated rain gauge data 

2. Running SPP simulations with reference 
(gauge) calibration for each satellite prod-
uct (to determine the intrinsic value of raw 
SPPs)

3. Running simulations with SPP-specific 
calibration (to determine the value of reca-
libration and raw SPPs)

4. Running simulations (with reference cal-
ibration parameters) for bias-corrected 
SPPs

Validation of Streamflow Simulations Using  
Rainfall-Runoff Modeling

BOX 10.1

• The performance of hydrologic applications using RS data can be 
highly variable, depending on basin size, geography, topography, 
and storm systems. 

• Hydrologic simulations will generally yield better results if RS in-
puts are bias corrected (if they contain biases) and if the hydro-
logic models are recalibrated with the same type of input data that 
will be used in these models for predictive purposes.



C H A P T E R  1 0 :  V A L I D A T I O N  O F  S T R E A M F L O w  O u T P u T S  F R O M  M O D E L S  u S I N G  R S  I N P u T S   |  191

RMSE values ranging from 0.2 to 0.7 meter at 
selected river stations (Hossain, Siddique-E-
Akbor, Mazumder et al. 2014). Currently, a fore-
cast system with lead times of 8 to 10 days has 
shown an RMSE of 0.7 meter at the India-Ban-
gladesh border (Hossain, Siddique-E-Akbor, 
Yigzaw et al. 2014). These results indicate that 
countries with large transboundary rivers could 
implement operational forecast systems with 
currently available and planned altimeter mis-
sions to manage water risks in flood-prone 
regions. The authors argue that satellite radar 
altimetry is probably more valuable in large riv-
ers than rainfall-runoff simulations using satel-
lite precipitation estimates to anticipate the 
occurrence of high-water conditions in the 
basin (see box 10.2). 

NOTE

 1. The Nash-Sutcliffe coefficient of efficiency is used 
to assess the performance of hydrologic models in 
replicating observed streamflows and is defined as 
follows: 

E  1 
T

t  1(Qt
o  Qt

m)2 

T
t  1(Qt

o  Qo)2

 ,

  where Qo is the mean of observed discharge, Qm is 
modeled discharge, and Qt

o is observed discharge 
at time t. 

Their high-water forecasting system (flood 
forecasting) yields correlations of 0.75 to 0.80 
(slightly lower than for flow forecasting) and 
NSEs of 0.71 to 0.79 (see table 9A.6, available 
online).

Box 10.1 summarizes the findings for vali-
dating streamflow simulations using rainfall-
runoff modeling.

STREAMFLOW SIMULATIONS 
BASED ON REMOTELY SENSED 
WATER LEVELS UPSTREAM

Flood-prone developing countries usually lack 
the in situ hydrologic data necessary to imple-
ment flood forecasting systems. In the case of 
transboundary basins, downstream countries 
are usually “blind” to what is happening in the 
upper part of the basin, because of the lack of 
international cooperation and scarcity of 
ground observation networks. 

For instance, presently there is no mecha-
nism for the  Bangladeshi government to receive 
timely information on upstream conditions of 
the Ganges-Brahmaputra basin. Stream mea-
surements at the borders where the rivers enter 
the country only allow the Bangladeshi govern-
ment to forecast water levels downstream with 
a lead time of two to three days at most. Recent 
work by Hossain, Siddique-E-Akbor, Mazum-
der et al. (2014) and by Hossain, Siddique-E-
Akbor, Yigzaw et al. (2014) has demonstrated 
the feasibility of implementing an 8- to 10-day 
ahead water-level forecast system in the Brah-
maputra River basin using Jason-2 estimates. 
Measurements of river surface levels upstream 
in India and a hydrodynamic model (the Hydro-
logic Engineering Centers River Analysis Sys-
tem, HEC-Ras) are used to predict how the 
observed water levels upstream will propagate 
to areas downstream. In operational forecasts 
during the high-flow season of August 2012, a 
five-day water-level forecast system had aver-
age errors ranging from −0.4 to 0.4 meter, with 

Validation of Streamflow Simulations Using Remotely 
Sensed Water Levels Upstream

BOX 10.2

Estimating water levels in large river basins using altimeters is a more direct 
way to monitor stage height and streamflow (and make predictions down-
stream) than using only basin-wide rainfall-runoff models, which can be 
particularly complex in the case of very large basins.

An operational forecast system based on satellite surface water altim-
etry to drive flow propagation models has extended forecast lead times in 
Bangladesh from 3 days to 8 or 10 days, with an RMSE of 0.7 meter at the 
India-Bangladesh border.
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On the basis of the literature review of the 
state-of-the-art of remote sensing (RS) for 
hydrologic simulations, several tentative con-
clusions may be drawn regarding the use of 
Earth observation (EO) to support water 
management applications:

• Satellite estimations are prone to several 
sources of uncertainty, which can signifi-
cantly affect the quality of the variables to 
be forecast.

• To inform natural resources managers 
about the usefulness of RS products for 
their decision-making processes, it is 
imperative to evaluate the reliability of 
those products at different spatiotemporal 
scales. 

• RS data in case studies and applications 
should always be used with ground data 
when available and with some level of 
validation.

• Hydrologic simulations generally yield 
better results if RS inputs have been bias 
corrected (if they contain biases) and the 

hydrologic models have been recalibrated 
with the same type of input data that will be 
used in these models for predictive purposes. 

• Accuracy and performance vary depend-
ing on climate, topography, the variable 
estimated, time aggregation, and basin 
size. The tables presented in annex 9A 
( available online at https://openknowledge 
.worldbank.org/handle/10986/22952) give 
a good idea of the most suitable RS prod-
ucts for hydrologic applications, the con-
texts in which they can be most useful, and 
when more caution is warranted in the face 
of greater uncertainties.

Finally, satellite estimations are overall 
well correlated with ground observations 
( figure 11.1)—showing median correlation 
coefficient (CC) values of 0.55 (±0.25) for 
 precipitation, 0.83 (±0.17) for evapotranspira-
tion, 0.58 (±0.19) for soil moisture, and 0.53 
(±0.21) for snow water equivalent.1 Precipita-
tion shows a broad range of CC values, which 
can be attributed to differences in the valida-
tion sites (which include mountain and plain 

The Bottom Line

CHAPTER 11

https://openknowledge.worldbank.org/handle/10986/22952
https://openknowledge.worldbank.org/handle/10986/22952
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observations. Despite the strong correlation 
found for ET estimates, biases in the range of 
−30 to +10 percent (relative to observed 
 values) have been reported in the literature 
(see the section on evapotranspiration in 
chapter 10). Similarly, for soil moisture, mean 
root mean squared estimate values of 0.11 
(±0.09) cubic meter by cubic meter and a 
mean positive bias of 0.04 (±0.05) cubic meter 
by cubic meter have been calculated (see the 
section on soil moisture in chapter 9), indicat-
ing that, despite strong correlations, the 
uncertainty of satellite estimates is still large. 
Snow water equivalent estimates also show a 
large variability, with bias values ranging from 
−20 to +20 percent (see the section on snow 
water equivalent in chapter 9).

NOTE

 1. Error margins given in parentheses refer to stan-
dard deviation values. These cannot be extracted 
from the corresponding tables but were computed 
separately.

 locations distributed across the globe). 
Evapotranspiration and soil moisture valida-
tion efforts are limited to fewer validation 
sites and to field experiments, which can 
partly explain the better linear relationship 
between satellite-derived products and 
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Figure 11.1  Correlation Coefficients between Ground Observations and 
Satellite Estimates

Note: n = sample size. The black horizontal line represents the median value.
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WRM. One key reason for this appears to be the lack 
of familiarity among the WRM community with 
available EO products and the ways in which they 
can be used to address WRM issues. This publication 
reviews the state of the art in the use of remote sens-
ing (RS) for water resources applications, guided by 
the general scope and requirements of the World 
Bank’s Water Global Practice.

Important topics like water supply for rural or 
urban water users, sanitation and hygiene, agricul-
tural water management, WRM and environmental 
services, and hydropower can be informed by eight 
variables that may contribute to and modify water 
resources management. These variables are precipi-
tation, evapotranspiration, soil moisture, vegetation 
and vegetation cover, groundwater, surface water, 
snow and ice, and water quality. An understanding 
of these eight biophysical parameters as well as of 
the theoretical basis for their estimation through 
Earth observation is important. Equally important is 
to have a list of current and near-future sensors 
that  can provide such information, indicates their 
suitability for water resources management, and, 

WATER AND DEVELOPMENT

Good water resources management (WRM) and 
planning are essential to sustain economic and 
human development as well as to maintain the 
health of the socioecological systems of which 
humans are a part. Especially in developing nations, 
water supply and sanitation and a healthy environ-
ment form the basis of successful poverty reduction 
strategies. With that ultimate goal in mind and to 
face other global water resources challenges, con-
tributions are needed to bridge the gap between 
existing technologies and operational applications 
in support of the planning, design, operation, and 
management of water resources.

POTENTIAL OF REMOTE SENSING

There is great potential for space-based Earth 
observation (EO) to enhance the capability to moni-
tor the Earth’s vital water resources, especially in 
data-sparse regions of the globe. Despite this poten-
tial, EO data products are currently underused in 

PART IV

Concluding Remarks



196  |  E A R T H  O B S E R V A T I O N  F O R  W A T E R  R E S O U R C E  M A N A G E M E N T

where  appropriate, describes existing data 
products that are produced on a regular basis.

CHALLENGES

Given the dynamic nature of Earth observa-
tion, it is no less important to have a way to 
keep this list up to date. The number of EO 
applications is growing as rapidly as the num-
ber of new, space-based technology, satellite 
missions, and data products. In addition, EO 
sensors are becoming more sophisticated, 
more sensitive, and more agile (as illustrated 
by on-demand programming for image acqui-
sition from commercial, high-resolution 
 sensors). The algorithms that translate top-of-
atmosphere EO data to ground-level informa-
tion are evolving rapidly.

Field measurement systems are also becom-
ing more sophisticated as new information 
technology, telemetry, and sensing solutions 
are developed. Moreover, methods to integrate 
observations and models through model-data 
fusion are being developed rapidly. While this 
bodes well for the usefulness of Earth observa-
tion for water resources management, it also 
means that some of the information in this 
publication will become outdated over the 
next few years. The reader may therefore still 
need to seek advice from area experts on the 
most recent developments and solutions.

Numerous reports and publications on 
hydrologic applications of remote sensing 
focus on the tools (products and models), but 
few publications focus on the needs of the 
practitioners and the characteristics of the 
decisions that such tools could be informing. 
Hence there is a great gap in the adoption of 
such tools by practitioners. To some extent, 
this is normal, as it is difficult to incorporate 
new, uncertain information into a decision 
process, especially if neither the uncertainty 
nor the reliability of the source is well quanti-
fied. While scientists and providers can work 
toward including uncertainty and reliability 
estimates, practitioners in developing regions 

can work toward characterizing in detail the 
climate- and water-sensitive decisions in their 
planning and management.

A WORD OF CAUTION

Despite its limitations, the literature review 
presented in this publication reflects the state 
of the art of remote sensing for hydrological 
purposes. On that basis, several statements can 
be made regarding the use of Earth observation 
to support water management applications:

• It is imperative to evaluate the validity of 
RS data products at different spatiotempo-
ral scales if they are to be of use for decision 
making.

• Validity and performance vary depending on 
climate, topography, the variable being esti-
mated, time aggregation, and basin size. It is 
good to know the contexts in which RS data 
can be most useful and when to be particu-
larly alert to greater uncertainties than usual.

• Satellite estimations are generally well cor-
related with ground observations. Despite 
these strong correlations, however, the 
uncertainty of some satellite estimates may 
still be large (but that may also be the case 
of ground measurements).

MAKING DECISIONS

The decision whether to use Earth observation 
to address a spatiotemporal information 
requirement should be based on criteria regard-
ing the accuracy, availability, maturity, com-
plexity, and reliability as well as the validity of 
required data. The suitability of using Earth 
observation for addressing a WRM need will 
also depend on whether it is the only source of 
data (in which case, the suitability of Earth 
observation is clear); whether EO information 
augments existing, but sparse, in situ informa-
tion (in which case Earth observation will still 
be a critical source of information, providing the 
spatiotemporal framework for maximizing the 
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From the satellite-sensor point of view, 
much coordination takes place via the Commit-
tee on Earth Observing Systems, whereas the 
Group on Earth Observations plays a global 
coordinating role for the end users of this infor-
mation. Other agencies with a need for EO-
derived information at multiple resolutions 
having global coverage are, for example, the 
United Nations Environmental Programme, the 
World Health Organization, and the Food and 
Agriculture Organization; coordination with 
these organizations could be highly effective.

DOWNSCALING TO THE LOCAL 
CONTEXT

Given these considerations and the information 
gathered for this publication, the following are 
suggested for helping developing-country prac-
titioners to bridge the gap between scientific-
academic and real-world uses of RS technology: 

 1. Technical support for mainstreaming the 
knowledge on how to make the best pos-
sible use of remote sensing as a tool for 
the water sector in particular.

 2. Technical orientation and definition of 
clear procedures and criteria to assess 
the usability of RS products for decision 
making and planning conditioned by 
uncertainty (error estimates), accuracy 
(characterization of errors), precision 
(spatial and temporal resolution), timeli-
ness, and validity of the data. This could 
include the quality and quantity of data 
generated to fill the information gaps, 
whether the information gathered has 
been validated or calibrated, the resolu-
tion used, or the level to which remote 
sensing has significantly influenced 
project performance.

 3. Knowledge about errors and uncer-
tainty. If products are used as inputs for 
modeling applications, it is important 
to know how errors are propagated or 

value of existing information); whether other 
relevant data exist; and whether Earth observa-
tion is needed mainly for its spatiotemporal 
aspects (in which case Earth observation will 
only add value if its relevance, coverage, and 
accuracy significantly improve the information 
derived from in situ data).

A WORD OF HOPE

Some organizations like the World Bank have 
funded or supported projects using EO infor-
mation. Through their water resources proj-
ects, these organizations could potentially be 
among the world’s largest adopters of remote 
sensing in water resources management. They 
may want to consider whether a coordinated 
approach to remote sensing for WRM applica-
tions could increase the effectiveness and effi-
ciencies in executing their projects. For 
example, if multiple projects involve similar 
applications, EO data sources, and EO tech-
niques, it may be possible to use available 
resources more efficiently by developing a sin-
gle data infrastructure (for example, for an 
entire region or transboundary basin). Simi-
larly, if the same data are required repeatedly 
in projects or if monitoring applications are 
considered, it may be worthwhile to develop a 
centralized data infrastructure that keeps such 
data sets up to date. Some of the options could 
be to establish in-house EO capabilities or to 
partner with institutions or consortia that have 
regional or global outreach.

A phased approach—where several specific 
EO applications are chosen in an area of fre-
quent WRM activity and are developed in a 
generic manner that may subsequently be rep-
licated elsewhere—is a possible pathway to 
widespread uptake and implementation. Such 
judicious planning of demonstration projects, 
involving areas with a clear need for EO-
derived information across relevant WRM 
application areas, possibly together with other 
relevant agencies, could create synergy while 
rapidly strengthening this area of activity.
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• What improvements in the hydrome-
teorological information being used—
or what new information—would 
make the greatest positive difference?

• What changes in decision making 
(decision thresholds and decision 
process) would result if such new 
information were available?

• What changes in the institutional 
framework would be needed to obtain 
and be able to use this new informa-
tion and to make these changes in 
decision making?

 6. Financial support windows for special-
ized technical assistance to individual 
projects or groups of projects. This sup-
port could include financial support for 
the development of specific applications 
that could benefit many projects in the 
same or similar regions.

 7. Financial and institutional support for 
data repositories and RS data libraries 
of different products with potentially 
built-in applications, for easy use by 
project teams.

 8. Practical guidelines—such as those 
offered in this publication—from the 
user’s point of view. These guidelines 
would include when in situ measure-
ments and RS applications would be 
more operationally advantageous and 
when value would be added by using 
one as a complement to the other (RS as 
complementary to in situ measurements 
or vice versa), taking into account their 
relevance, availability, level of detail, and 
the accuracy required as well as develop-
ing countries’ capabilities.

 9. Financing mechanisms for in-country 
capacity building to improve decision 
making and better characterize decisions. 
This would help to identify the value of 

compounded through model calcula-
tions and what uncertainty is contained 
in the output variables.

 4. Technical orientation on reliability 
assessments of applications, including 
EO estimates. Given a specific appli-
cation designed to model or predict a 
variable, reliability evaluations should 
be performed to see in how many simu-
lated historical events the observations 
fell within the uncertainty bounds of the 
application’s predictions. Such a reliabil-
ity assessment would allow for improved 
characterization of the application’s 
limitations. 

 5. A good characterization of the planning 
and decision processes to be informed by 
RS data and applications. If new develop-
ments bring about new decision-making 
processes, these processes should like-
wise be well characterized. Starting from a 
comprehensive, basin-wide development 
plan, identify the specific management 
and planning decisions to be made and 
then characterize the climate- or water-
sensitive decisions that RS products could 
inform and what the benefits of such infor-
mation would be. The following questions 
may be relevant for that purpose: 

• What are the climate- or water- 
sensitive management decisions that 
 client country ministries, depart-
ments, and agencies are confronted 
with in their water management and 
planning cycles?

• What degree of accuracy and preci-
sion is required in each of these deci-
sions, and how much uncertainty can 
be tolerated?

• What are the consequences of a mis-
take caused by faulty data and what 
kind and degree of failure can be 
tolerated?
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the co-production of knowledge by scholars 
and practitioners.

This publication provides a guide to WRM 
professionals considering the use of Earth 
observation. Essential questions are provided 
that must be answered to help to navigate and 
evaluate the abundance of EO-based options 
and data products, including the likely validity 
of water resource variables estimated though 
Earth observation. The focus is on appropriate 
questions to ask once it has been concluded 
that exploring EO options for the WRM prob-
lem at hand is worthwhile. A flowchart pre-
sented in chapter 7 offers a “road map” for this 
purpose (figure 7.1).

It is hoped that the information collected 
in this publication will contribute to a greater 
and more judicious use of EO data in global 
WRM issues, thereby helping to alleviate pov-
erty, promote sustainable growth, and 
increase the efficient use of the world’s water 
resources.

potential data and their relevance for a 
specific decision-making activity.

OUTLOOK

A good understanding of the answers to these 
questions can inform the design of special tools 
for specific purposes. As new information 
becomes available, it may give new insights 
into how to apply this information in practice 
within a specific management and planning 
setting. Thus communication between scien-
tists, researchers, and practitioners should be a 
two-way street.

The World Bank and other development 
banks, United Nations agencies such as the 
World Meteorological Organization, and other 
international entities could play a role in clos-
ing the gap between science application efforts 
and operational decision-making needs. In 
addition, they could promote and facilitate 
data sharing, capacity-building strategies, and 
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APPENDIX A

Examples of Earth 
Observation Applications in 
World Bank Projects

P050647 

P122770

UTTAR PRADESH WATER SECTOR RESTRUCTURING 

UTTAR PRADESH WATER SECTOR RESTRUCTURING PHASE 2 (POTENTIAL USE OF REMOTE SENSING)

PROJECT DETAILS

Team task leaders Winston Yu, Anju Gaur

Contact Winston Yu, Anju Gaur

Status P050647 (2001–11; closed)

P126703 (2012–20; active)

description/objectives P050647: To set up an enabling institutional and policy framework for water sector reform in Uttar Pradesh 
State for integrated water resources management and to initiate irrigation and drainage subsector reforms 
to increase and sustain water and agricultural productivity in the state.

P122770: To strengthen the institutional and policy framework for integrated water resources management 
for the entire state and to increase agricultural and water productivity by supporting farmers in targeted 
irrigation areas.

Project component related to 
remote sensing 

In past projects, evaluating project performance has been weak, and some level of monitoring and 
evaluation has been required, leading to the need to adjust the project design during implementation. Funds 
were provided to recruit third-party expertise for the monitoring and evaluation of each component of the 
project (P050647). As a result, benchmarking, remote sensing, geographic information system (GIS), and 
participatory monitoring and evaluation were carried out for different components of the project. 

Baseline data collected during preparation and implementation of each specific intervention were used to 
assess project impact through the collection and analysis of similar information at specific points in time 
during the project period and, eventually, in other project areas.

Use of remote sensing These projects use remote sensing (RS) tools to establish a strong monitoring and evaluation system in order 
to assess project progress and impact. The use of remote sensing in P050647 was intended to produce a 
geospatial evaluation tool to assess the progress and impact of agricultural and water projects supported by 
the World Bank in India. In this case, a selected pilot study was carried out in the Jaunpur Branch System to 
serve as a benchmark for other project areas.

Window/initiative Not applicable 
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REMOTE SENSING INFORMATION

Input (data type, source, 
resolution, etc.)

 1. Landsat data. Images for the study area were identified and acquired through the landsat Program 
website to complement overall project objectives of distributing a multitemporal, multispectral, and 
multiresolution range of imagery appropriate for irrigation impact analysis. due to cloud cover in the 
region, additional sensor data sets—landsat Thematic Mapper (TM), landsat Enhanced Thematic Mapper 
Plus (ETM+), and Global land Surveys (GlS)—were used to fill the scanline gaps.

 2. MODIS (Moderate Resolution Imaging Spectroradiometer) data. daily global imagery provided spatial 
resolutions of 250-meter (red and NIR1) and 500-meter (blue, green, NIR2, SWIR1, and SWIR2). The 
MdOO9A1 data sets in 2000 to 2010 were acquired from the U.S. Geological Survey’s Earth Resources 
Observation Systems data Center website. The following three indexes were calculated for each MOdIS 
eight-day composite: (1) normalized differential vegetation index (NdVI), (2) enhanced vegetation index 
(EVI), and (3) land surface water index (lSWI) using surface reflectance values from the blue, green, red, 
NIR1, and SWIR bands. 

Model (source, variables, 
selection criteria)

MODIS time-series analysis. The vegetation phenological analyses were calculated using the seasonal 
dynamics of the three indexes—EVI, NdVI, and lSWI—from 2000 to 2010. The analysis included cropping 
intensity (number of crops per unit area in a year), length of growing season, and beginning and ending of 
the growing season. For identifying multiple cropping cycles in an image pixel, the temporal profile of the 
indexes was analyzed by applying a computational algorithm to all of the individual pixels for delineating 
the number of cropping cycles in a year.

Mapping multiple cropping areas. Multiple cropping areas were assessed for a regular calendar year 
(January–december). Given the nature of the cropping season in India and monsoon patterns, the cropping 
calendar was remapped from July to June for 11 years starting in 2000–01 at 500-meter spatial resolution.

Annual vegetation anomalies. Annual vegetation anomalies were calculated by subtracting the annual mean 
NdVI from the long-term mean (2000–10). The main objective was to see the dynamics of cropland 
vegetation at annual intervals compared to the long-term average. 

Land use/land cover change analysis. Advanced Wide Field Sensor (AwiFS) based on land use maps was 
used to quantify the change in land use that occurred between 2004–05 and 2008–09. The change in area 
was further analyzed at head reach, middle reach, and tail ends to see changes at each distribution.

Crop intensity. Crop intensity was estimated before and after project implementation as follows: cropping 
intensity = (gross cropped area / net sown area) x 100. Higher cropping intensity means that a higher portion 
of the net area is being cropped more than once during one agricultural calendar year. This also implies 
higher productivity per unit of arable land during one agricultural calendar year.

Dynamics of the crop phenology. Satellite images were used from the MOdIS sensor. For each eight-day 
composite image, the EVI and lSWI were calculated using surface reflectance values from the blue, red, near 
infrared (NIR, 841–875 nanometers), and shortwave infrared (SWIR, 1,628–1,652 nanometers) bands. The 
MOdO9A1 files include quality control flags to account for various image artifacts (for example: clouds, 
cloud shadow). In addition, blue band reflectance was used to eliminate further contaminated observations 
(such as clouds, aerosols). Annual maximum values of EVI were selected for pixels from all of the remaining 
good observations in a year, and the dates for annual maximum EVI and lSWI were recorded. The study 
used seasonal maximum values of EVI and lSWI (magnitude) and date of seasonal maximum vegetation index 
(timing) as a measure for crop phenology. 

Output (results: maps, 
indexes, etc.)

• Mapping of multiple cropping areas (single, double, and triple) for 2004–05 and 2008–09  

• Mapping of annual vegetation anomalies from the long-term mean (2000–10) and spatial distribution of 
vegetation dynamics

• Analysis of land use and land cover change 

• Identification of differences in crop intensity between 2004–05 and 2008–09. 

Collaboration A partnership was formed between the Uttar Pradesh Irrigation department and the Remote Sensing Agency 
in Uttar Pradesh.
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Outcome relevant to the 
objective of the component

Potential for using remote sensing from the activity described above:

• RS-based analysis indicates that project intervention improved the vegetation health and distribution 
across the basin, which is a good indicator of increased productivity.

• The methodology was overseen by a Bank team and proven useful to the client.

• A partnership was formed between the Uttar Pradesh Irrigation department and the Remote Sensing 
Agency in Uttar Pradesh.

• This work led to an actual component in a new operation that will use this methodology.

• The approach developed in this pilot study, though data intensive, is efficient with respect to the 
amount of fieldwork that would be required to do similar analysis.

• Such a methodology can be replicated easily in other operations.

• As in this case, RS methodologies can be an effective approach (especially when using free RS data) to 
monitoring agricultural performance in large geographic areas and potentially be mainstreamed into 
monitoring and evaluation approaches for irrigation projects. 

P114949 

P117617 

P104446

P102459

ZAMBIA WATER RESOURCES DEVELOPMENT

SHIRE RIVER BASIN DEVELOPMENT PROJECT

MALAWI DISASTER RISK REDUCTION AND RECOVERY PROJECT

ZAMBIA IRRIGATION DEVELOPMENT AND SUPPORT PROJECT

PROJECT DETAILS

Team task leaders Marcus Wishart, Pieter Waalewijn, kremena M. Ionkova, Indira Ekanayake

Contact Marcus Wishart, Pieter Waalewijn, kremena M. Ionkova, Indira Ekanayake, Nagaraja Harshadeep

Status P114949  (2013–18; active)

P117617 (2012–18; active)

P104446 (2007–10; closed)

P102459 (2010–18; active)

description/objectives P114949: To support the implementation of an integrated framework for development and management of 
water resources in Zambia. 

P117617: To generate sustainable social, economic, and environmental benefits by effectively and 
collaboratively planning, developing, and managing the Shire River basin’s natural resources.

P104446: To increase yields per hectare and volume of products marketed by smallholders benefiting from 
investments in irrigation in selected sites served by the project. 

P102459: To increase yields per hectare and volume of products marketed by smallholders benefiting from 
investments in irrigation in selected sites served by the project.

Project component related to 
remote sensing

These projects use Earth observation (EO) tools to map small water bodies in Zambia, assess water quality in 
lake Malawi, and assess erosion patterns in some areas in the Shire River basin of Malawi.

Satellite Earth observation has added value to the task of making inventories of small water bodies, which 
are often sources of irrigation water for rural communities in Zambia. The network of ground measurements 
and inventories of these water bodies are often incomplete, sparse, or difficult to maintain. Conversely, the 
use of EO tools allowed the mapping of small reservoirs, which made more efficient use of existing ground 
measurements. This component focused on rural communities that will benefit from improved small-scale 
water resources infrastructure and basin planning.

In lake Malawi and nearby lakes Malombe and Chilwa, the existing ground data for assessing water quality 
are limited and inadequate. For example, it is critical to assess the sediment loads in these lakes and rivers 
accurately since high sediment loads have caused problems for hydroelectric power stations in the past. 
However, based on existing ground measurements, it is difficult to assess the hydrologic status of the basin. 
On the contrary, information derived from Earth observation can supplement ground measurements to 
improve watershed management in some catchments of the lake.
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Soil erosion has been a major concern in Malawi due to population growth, deforestation, and development 
of new settlements. EO information provides accurate and up-to-date information on land use and changes 
in land use in order to optimize planning for water resource investments, flood mitigation, and watershed 
management in selected catchments of the Shire basin.

The experience of these projects shows that EO information and modern satellite products can be used to 
find innovative approaches to prioritize investments. 

Use of remote sensing • Identification, mapping, and cataloguing of small-scale water bodies, reservoirs, and lake extensions 
based on SAR (synthetic aperture radar) data, including their evolution over time 

• Production of lake Malawi water quality products, including lake surface temperature measurements as 
well as historical water-level records

• Estimation of soil loss and erosion using very high-resolution optical data (SPOT5) from 2005 to 2010. 

Window/initiative EOWorld, TigerNET

REMOTE SENSING INFORMATION

Input (data type, source, 
resolution, etc.)

Small reservoir mapping (Zambia). landsat, Advanced Synthetic Aperture Radar (ASAR) imagery.

Monitoring of Lake Malawi. Envisat- Medium Resolution Imaging Spectrometer (MERIS) data were used to 
evaluate key water quality parameters, including chlorophyll-a as a proxy for biomass, total suspended 
matter concentrations and kd (attenuation coefficient) as a proxy for turbidity and transparency, and colored 
dissolved organic matter as a proxy for the presence of humic substances.

Shire River basin. The estimation of soil loss and erosion within Malawi’s Shire River basin was based on 
SPOT5 acquisitions from 2005 to 2010 and covered 10,798 square kilometers in 17 land use classes.

Model (source, variables, 
selection criteria)

lake Malawi water quality: BEAM (Basin Economic Allocation Model); WISP (Water Information System 
Platform)

Output (results: maps, indexes) • Identification and mapping of small reservoirs and assessment of relevant storage evolution over time

• land cover and land use maps and deforestation rates

• Erosion maps

• Water quality maps. 

Collaboration European Space Agency, Netherlands Geomatics and Earth Observation B.V. (Netherlands), Technical 
University of delft (Netherlands),  Water Insight (Netherlands)

Outcome relevant to the 
objective of the component

EO information was used to assist the prioritization of investments, the monitoring of lakes and basins, basin 
planning for water resource investments, flood mitigation and risk reduction, and watershed management in 
selected catchments.
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APPENDIX B

Examples of Water 
Information Product 
Generation Systems

INTRODUCTION

The main text highlights the data needed to 
address the most pressing water issues in the 
developing world and explains where and 
how Earth observation (EO) can help to pro-
vide this information. This appendix lists and 
briefly describes some water information sys-
tems that are notable examples of the integra-
tion of ground observations, EO data, and 
models. This is a subjective selection, not a 
comprehensive list of all existing systems. 

FLOOD WARNING AND 
MONITORING SYSTEMS

Dartmouth Flood Observatory 
The Dartmouth Flood Observatory provides 
historical and near-real-time monitoring of 
large flood events worldwide.1 The service 

uses Moderate Resolution Imaging Spectrome-
ter (MODIS) 250-meter data to map surface 
water areas and compare them with historical 
imagery to detect flood occurrence. The Dart-
mouth Flood Observatory also uses time series 
of passive microwave daily observations at 
selected locations to estimate river discharge 
(River Watch). In each of these locations, an 
empirical linear model has been fitted between 
observed discharge and the passive microwave 
signal, providing an estimate of discharge in 
near real time when floods occur. The service 
allows users to access historical events. 

Using the same algorithms as those devel-
oped by the Dartmouth Flood Observatory, the 
National Aeronautics and Space Administra-
tion (NASA) has implemented a near-real-time 
service called Global MODIS Flood Mapping.2 
This service allows users to download rasters 
of surface water and flood water in several for-
mats (figure B.1).
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Figure B.1  Map 
Showing Surface 
Water Extent in 
a Flood Event in 
Bolivia in March 
2014 and Discharge 
Estimate from 
Passive Microwave 
Source: Brakenridge et al. 2014.
http://floodobservatory 
.colorado.edu/rapid 
response/2014Bolivia4117/ 
2014Bolivia.html. license: 
creative commons 
Attribution cc By 3.0. 
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Global Flood and Landslide  
Monitoring 
The Global Flood and Landslide Monitoring 
web service uses the Tropical Rainfall 

Measuring Mission (TRMM) Multisatellite 
Precipitation Analysis (TMPA) sensor to moni-
tor rainfall accumulation across the globe, 
excluding high-latitude regions (figure B.2).3 It 

http://floodobservatory.colorado.edu/rapidresponse/2014Bolivia4117/2014Bolivia.html
http://floodobservatory.colorado.edu/rapidresponse/2014Bolivia4117/2014Bolivia.html
http://floodobservatory.colorado.edu/rapidresponse/2014Bolivia4117/2014Bolivia.html
http://floodobservatory.colorado.edu/rapidresponse/2014Bolivia4117/2014Bolivia.html
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(NOAA), the U.S. Department of Agriculture 
(USDA), the National Drought Mitigation Cen-
ter (NDMC), and the University of Nebraska, 
Lincoln.4 The system uses climatic, hydrologic, 
and soil condition observations from more than 
350 contributors around the United States and 
expert opinions from 11 climatologists to pro-
duce the weekly drought condition map. This 
evaluation product is qualitative (and to some 
extent subjective), not quantitative. Several 
external data sources that use Earth observation 
are also tapped to determine drought intensity:

• Vegetation drought response index, pro-
duced by the NDMC and the U.S. Geological 

uses the satellite observations for estimating 
flood risk (Hong et al. 2007; Wang et al. 2011) 
and potential landslide sites (Hong, Adler, and 
Huffman 2006, 2007). 

SOIL MOISTURE AND DROUGHT 
MONITORING SYSTEMS

U.S. Drought Monitor
The U.S. Drought Monitor provides a weekly 
map of drought conditions across the United 
States and is produced jointly by the National 
Oceanic and Atmospheric Administration 

Current Heavy Rain, Flood and Landslide Estimates
(Rain information from Real-Time TRMM Multi-Satellite Precipitation Analysis [TMPA/3B42])

Click on the maps below for regional displays with more information

See HEAVY RAIN AREA maps See POTENTIAL LANDSLIDE maps

9  APR  2014  0300  UTC

GODDARD SPACE FLIGHT CENTER + NASA Homepage

(Observation time of last date processed)

+ ABOUT TRMM + NEWS + PUBLICATIONS + SEARCH + CONTACTS + DATA + IMAGE POLICY

Source: Goddard space flight center, national Aeronautics and space Administration (nAsA). http://trmm.gsfc.nasa.gov/publications_dir/ 
potential_flood_hydro.html.

Figure B.2  Example Outputs from the Global Flood and Landslide Monitoring System 

http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html
http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html
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• Soil moisture anomaly, which is obtained 
from modeling 

• The fraction of photosynthetically active 
radiation absorbed by vegetation, obtained 
from the Medium Resolution Imaging 
Spectrometer (MERIS) sensor. 

Australian Water Availability Project 
The Australian Water Availability Project 
(AWAP) monitors the state and trend of the 
terrestrial water balance of the Australian 
 continent. The system uses the Waterdyn25M 
model ( Raupach et al. 2009), which includes 
remotely sensed fraction of absorbed photo-
syntetically active radiation to estimate vege-
tation cover and surface temperature, aimed 
at improving the estimation of evapotranspi-
ration fluxes. The AWAP system provides 
weekly and monthly estimates of all the water 
balance components, including soil moisture 
in two soil layers, transpiration, runoff, and 
deep drainage. These estimates are operation-
ally available from 2007 onward; historical 
model runs have been produced for 1900–
2011 to generate continental estimates of the 
water balance components. The Australian 
Bureau of Agricultural and Resource Eco-
nomics and Sciences uses the AWAP system 
to report weekly on soil moisture conditions 
across the country (figure B.3). 

IRRIGATION WATER USE AND CROP 
GROWTH MONITORING SYSTEMS

FieldLook 
Fieldlook, a system run by the eLEAF Com-
pany in the Netherlands, provides satellite-
derived information to farmers.6 Weekly 
estimates of biomass production, carbon diox-
ide intake, leaf area index, and vegetation index 
are provided to subscribers, mostly in the 
Netherlands, but also in some Eastern Euro-
pean countries. Key to the system is the ET 
Tool, which is an adaptation of model evapo-
transpiration across large areas based on the 

Survey, combines data on the average per-
centage of seasonal greenness and start of 
season anomaly from the Advanced Very 
High Resolution Radiometer (AVHRR) 
normalized difference vegetation index 
(NDVI) with other biophysical and climate 
data (Brown et al. 2008; Gu et al. 2008)

• Evaporative stress index, produced by the 
U.S. Department of Agriculture, is retrieved 
via the energy balance using remotely sensed 
land surface temperature time-change sig-
nals and data from the geostationary opera-
tional environmental satellites (GOES)

• Vegetation health index, produced glob-
ally by NOAA, is calculated by combining a 
scaled NDVI (vegetation condition index) 
with a scaled brightness temperature index 
(temperature condition index), both derived 
from AVHRR

• NDVI greenness maps, produced for the 
Wildland Fire Assessment System, are 
derived from AVHRR

• Precipitation analysis, by the National 
Weather Service, is produced by merging 
rainfall radar and gauge data 

• Groundwater and soil-moisture data from 
the Gravity Recovery and Climate Experi-
ment (GRACE), produced by NASA, are 
assimilated into a land surface model.

The dominance of AVHRR observations may 
be evident and can be explained by the long 
time series required to distinguish drought con-
ditions of different severity. 

European Drought Observatory
The European Drought Observatory uses 
meteorological data and vegetation indexes 
obtained from remote sensing to provide con-
tinuous drought assessments over Europe.5 
Three indexes are combined: 

• The standardized precipitation index, 
which measures the rainfall anomaly from 
observations 
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Crop Explorer and GeoGLAM:  
Crop Monitor
The Crop Explorer system is run by the U.S. 
Department of Agriculture and provides a 
global assessment and seasonal forecasts of 
crop growth and production.8 The website 
allows zooming into continents and regions 
and displays several observed or modeled 
 variables—including rainfall and soil mois-
ture—obtained from the World Meteorological 
Organization and the U.S. Air Force Weather 
Agency. It also provides vegetation indexes and 
anomalies from the vegetation (Satellite for 
Earth Observation, SPOT) and MODIS sensors. 
Crop Explorer also provides interactive access 
to graphs and maps of reservoirs and lake levels 
from the Jason-2 and Envisat  sensors.9

The system provides an interactive map that 
allows users to select a lake or reservoir and dis-
plays the time-series data from either sensor 
showing height variation. Users also have the 
option of downloading the data in ASCII format. 

The GeoGLAM Crop Monitor is a joint ini-
tiative involving NASA and the Goddard Space 
Flight Center, the U.S. Department of Agricul-
ture and the Foreign Agricultural Service, 

Surface Energy Balance Algorithm for Land 
(SEBAL) model.

Irrigateway
irriGATEWAY, a system run by the Common-
wealth Scientific and Industrial Research 
Organisation (CSIRO), aims to improve deci-
sion making for agricultural water resources 
management.7 Among the tools run by the 
system, most relevant in this context are the 
crop coefficient (Kc) maps for irrigation dis-
tricts (see figure B.4), which are generated 
using NDVI calculated from Landsat imag-
ery. Actual evapotranspiration estimates are 
generated for selected irrigation areas, and 
the ratio of actual to potential evapotranspi-
ration is calculated to provide Kc. The data 
for individual paddocks are extracted and 
sent automatically via text messages to farm-
ers who have subscribed to the service. 
These farmers, in turn, use the information 
to refine the irrigation volumes and bench-
mark their water use against that of other 
irrigators who subscribe to the service. 
Water providers can also use the system as 
an auditing tool. 
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Figure B.3  Example 
Output of Selected 
Variables Generated 
by the AWAP System 
Source: commonwealth 
scientific and industrial 
research organisation 
(csiro). http://www.eoc 
.csiro.au/awap/. © csiro. 
used with permission. 
further permission required 
for reuse.

http://www.eoc.csiro.au/awap/
http://www.eoc.csiro.au/awap/
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food shortages. CropWatch estimates crop area 
and yields and also assesses drought and crop 
conditions. 

SNOW EXTENT

NOAA’s National Snow Analysis
Several U.S agencies produce a variety of 
satellite-derived snow products that range 
from regional to global in scale and from daily 
to monthly in frequency: 

• The NOAA National Environmental Satel-
lite Data and Information Service North-
ern Hemisphere snow extent maps 

• The National Snow and Ice Data Centre 
(NSIDC) Northern Hemisphere EASE-Grid 
Weekly Snow Cover and Sea Ice Extent 
product 

Science Systems and Applications, Inc., and the 
University of Maryland.10 It uses MODIS NDVI 
data to monitor croplands globally and pro-
vides detailed maps at 250-meter resolution of 
vegetation index anomalies. Users can select a 
point or polygon and obtain time-series data of 
NDVI from 2000 until the present. 

CropWatch
CropWatch, China’s global crop monitoring 
system, uses EO data combined with selected 
field data to determine key crop production 
indicators, including crop acreage, yield and 
production, crop condition, cropping intensity, 
crop-planting proportion, total food availability, 
and status and severity of droughts. Results are 
combined to analyze the balance between sup-
ply and demand for various food crops and, if 
needed, provide early warning against possible 

Figure B.4  Example 
Output of a Crop-
Coefficient (Kc) 
Map Produced by 
irriGATEWAY
Source: csiro. http://www 
.irrigateway.net/tools/
kcmap/location.aspx?loc 
=mia. © csiro. used with 
permission. further 
permission required for 
reuse.
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instruments include the optical imager and 
thermal sounder.

MODIS Snow Data Product
NASA produces the MODIS suite of global 
snow products, composed of products covering 
a range of spatial resolutions (from 500 meters 
to 0.25°) and temporal resolutions (daily, eight-
day, and monthly). Snow cover is described as 
fractional cover; snow albedo is also available. 
Together these are designated as the MOD10 
data product. MOD10 data are derived from 
the visible and infrared channels on MODIS 
and use the normalized difference snow index 
(NDSI), which compares the differences in 
reflectance between green and mid-infrared 
wavelengths (Hall et al. 2002). 

GlobSnow
The European Space Agency (ESA) funded 
GlobSnow-1, which produced hemispheric, 
long-term, daily, weekly, and monthly records 
of snow cover and snow water equivalent. This 
task is now being continued through the 
 GlobSnow-2 Project. The snow cover data are 
based on optical data from Envisat’s Advanced 
Along Track Scanning Thermal Radiometer 

• The NSIDC Near-Real-Time SSM/I EASE-
Grid Daily Global Ice Concentration and 
Snow Extent product 

• The U.S. National Operational Hydro-
logic Remote Sensing Center’s (NOHRSC) 
National Snow Analysis.11 

These products are made specifically for 
application to hydrologic analyses (figure B.5). 
The analyses provide daily, operational moni-
toring of snow across the United States, includ-
ing snow depth, snow water equivalent, and 
snow melt.12 

Products provide information on the physi-
cal properties of snow by combining satellite-, 
airborne-, and field-based observations with 
snow models. Satellite imagery comes from 
both geostationary (GOES) and polar-orbiting 
operational environmental satellites (POES) 
operated by both NOAA and the European 
Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT). The POES 
instruments include the optical AVHRR, ther-
mal High Resolution Infrared Radiation 
Sounder (HIRS/3), and microwave sensors 
from the Advanced Microwave Sounding Unit 
and Mitsubishi Heavy Industries. The GOES 
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Figure B.5  Snow 
Depth for the 
Continental United 
States on April 8, 
2014 
Source:  national opera-
tional Hydrologic remote 
sensing center. http://www 
.nohrsc.noaa.gov/nsa/.

http://www.nohrsc.noaa.gov/nsa/
http://www.nohrsc.noaa.gov/nsa/
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that the information they provide has found 
wide uptake in water management.” Van Dijk 
and Renzullo (2011) define “spatial water 
resources monitoring systems” as software 
that integrates observations into models to 
produce spatial estimates of current (and past) 
water resources distribution. A few examples 
of such systems are given below. 

North American and GLOBAL Land Data 
Assimilation Systems
The North American Land Data Assimilation 
Systems (NLDAS) combines data from multi-
ple sources within models to produce gridded 
maps of land surface states and fluxes.15 Among 
the states and fluxes reported, and of interest 
for regional hydrology, are soil moisture, 
streamflow, runoff, and evapotranspiration. 
The modeling framework behind the NLDAS 
system includes the Mosaic, Noah, Sacra-
mento, and VIC models (Xia, Mitchell, Ek, 
Cosgrove et al. 2012; Xia, Mitchell, Ek, Shef-
field et al. 2012). The NLDAS uses remotely 
sensed information of downward shortwave 
radiation from the GOES-8 satellite and the 
Climate Prediction Center’s MORPHing 
technique (CMORPH) for estimating precipi-
tation. The NLDAS Drought Monitor provides 
estimates of soil moisture, snow water equiva-
lent, total runoff, streamflow, evapotranspira-
tion, and precipitation for the continental 
United States. It also provides forecasts of 
these variables of up to six months. Using an 
approach similar to NLDAS, a global version 
(GLDAS) has been developed.16 

Satellite observations are used in GLDAS 
directly and indirectly. In particular, the mete-
orological forcing data are derived from 
“a  combination of NOAA/GDAS atmospheric 
analysis fields, spatially and temporally disag-
gregated NOAA Climate Prediction Center 
Merged Analysis of Precipitation (CMAP) 
fields, and observation-based radiation fields 
derived using the method of the Air Force 
Weather Agency’s AGRicultural METeorologi-
cal modeling system.” 

(AASTR) and European Remote Sensing 
 Satellite (ERS-2) sensors, while the snow water 
equivalent record is based on the time series of 
measurements by two different space-borne 
passive microwave sensors (the Scanning Mul-
tichannel Microwave Radiometer [SMMR] 
and the Special Sensor Microwave Imager 
[SSM/I]). The snow water equivalent product 
combines satellite-based passive microwave 
measurements with weather station data 
through a data assimilation scheme. 

China Meteorological Administration
The China Meteorological Administration oper-
ationally monitors the snow cover of China and 
the Northern Hemisphere.13 Monitoring is done 
using a combination of optical and microwave 
data from the geostationary and polar-orbiting 
satellites Fengyun-2D (FY-2D), Fengyun-2E 
(FY-2E), and Fengyun-3B (FY-3B). These prod-
ucts have been favorably compared against the 
MODIS snow products (Yang et al. 2014).

Central Asia Snow Melt Forecasting
Snowmelt is a critical water resource for many 
of the arid countries in Central Asia. Having 
suitable capacity to predict snowmelt is there-
fore important for water and food security in 
this region. The Regional Centre for Hydrol-
ogy in Central Asia, a Swiss-backed initiative, is 
tasked with (among other things) forecasting 
snowmelt across the five member countries 
(Kazakhstan, the Kyrgyz Republic, Tajikistan, 
Turkmenistan, and Uzbekistan).14 Forecasts 
are produced by combining satellite imagery 
(AVHRR), expert opinion, ground observa-
tions, and modeling.

WATER RESOURCES MONITORING 
SYSTEMS

According to Van Dijk and Renzullo (2011), 
“Few satellite data are used in only a handful of 
operational surface water resources monitor-
ing systems. There appears to be little evidence 
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model. It shares a common heritage with the 
Australian Water Resources Assessment Land-
scape (AWRA-L) model but is applicable to a 
wider range of conditions. Processes such as 
evapotranspiration, soil and groundwater 
movement, and streamflow are represented for 
two vegetation classes in each 1° grid cell (forest 
and nonforest cover). The climate data that are 
fed into the model are a combination of several 
sources, which are blended to obtain the best 
estimates of past and current conditions. The 
model is forced by “ERA-Interim” weather 
forecast model reanalysis data from the Euro-
pean Centre for Medium-Range Weather Fore-
casts. For low latitudes, these are combined 
with near-real-time TRMM multisensor pre-
cipitation analysis data (TMPA 3B42 RT) (Huff-
man et al. 2007) to improve estimates of 
convective rainfall (Peña-Arancibia et al. 2013). 

WATER RESOURCES ASSESSMENT 
AND SCENARIO STUDIES

Murray-Darling Basin Sustainable  
Yields Project
In 2007 and 2008, CSIRO led a consortium to 
assess the likely impacts of climate change on 
the surface water and groundwater resources 
of the Murray-Darling basin. This region cov-
ers 1 million square kilometers and supplies at 
least 40 percent of Australia’s agricultural pro-
duction. The Murray-Darling Basin Sustain-
able Yields Project delivered the most 
comprehensive and complex whole-of-basin 
water assessment ever undertaken in Australia 
and was probably the world’s first regarding 
the scale of assessment.

The project, funded by the Australian 
National Water Commission, reported on water 
availability and water use under historical and 
likely future climates, together with a consider-
ation of possible changes in farm dams and for-
estry. It brought together nearly 200 people 
from more than 15 organizations and assembled 
a complex, computer-based model of the basin’s 

Australian Water Resources Assessment 
System 
The Australian Water Resources Assessment 
System (AWRA) uses a series of coupled land-
scape, groundwater, and river models to provide 
consistent water information for Australia.17 
The Australian Bureau of Meteorology uses the 
AWRA system, along with other data sources, to 
produce the Australian Water Resources Assess-
ment and annual National Water Account. 

The AWRA provides consistent water infor-
mation on climatic conditions and landscape 
characteristics, patterns and variability in 
water availability over time, surface water and 
groundwater status, floods, streamflow salinity 
and inflows to wetlands, and urban and agri-
cultural water use. Previous AWRA reports 
such as the 2012 assessment (BoM 2013) used a 
grid-based landscape model, AWRA-L (Van 
Dijk 2010; Van Dijk and Warren 2010) to pro-
duce information on the landscape water bal-
ance (figure B.6). More recently, this has been 
coupled with a continental groundwater model 
(AWRA-G) and a river water accounting model 
(AWRA-R), which will be used in future 
reports. 

Asia-Pacific Water Monitor 
The Asia-Pacific Water Monitor, an experi-
mental water balance monitoring system 
developed by CSIRO and Australian National 
University, provides near-real-time water bal-
ance estimates for the Asia-Pacific region and 
interprets these in a historical context.18 Maps 
show precipitation, streamflow, catchment 
water storage, and actual and potential evapo-
transpiration. Information is presented as 
actual values, deciles, anomalies, and percent-
age of average and is available for daily totals 
and 30-day averages. 

The Asia-Pacific Water Monitor is based on a 
water balance model that is updated daily using 
weather data derived from a mix of field and 
satellite measurements and weather forecasts. 
The model used in the monitor is the World-
Wide Water Resources Assessment (W3RA) 



214  |  A p p e n d i x  B :  e x A m p l e s  o f  W A t e r  i n f o r m A t i o n  p r o d u c t  G e n e r A t i o n  s y s t e m s

Murray-Darling basin: it has changed the flood-
ing regimes that support nationally and interna-
tionally important floodplain wetland systems, 
reduced the total water flow at the Murray 
mouth by 61 percent, and caused the river to 
cease flowing through the Murray mouth 

water resources. This was achieved by linking 
40 existing and new models of surface and 
groundwater supplies and extractions across 
the basin’s 18 individual regions.

The project found that water resources 
development has profoundly affected the 

Landscape water flows

Streamflow (at selected gauges)

Surface water storage (comprising about 88% of the region’s total capacity of all major storages)

Wetlands inflow patterns (for selected wetlands)

Groundwater (in selected aquifers)
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Spatial patterns:

Temporal patterns in
regional average:

Predominantly very much above average throughout the region, with
some areas of above average in the south and east of the region

Consistently very much above average during the year
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Salinity:
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Predominantly above average flow throughout the region and numerous stream 
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Evapo-
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Figure B.6 Example 
Summary Output 
from AWRA for 2012 
in the Murray-Darling 
Basin
Source: reproduced from 
Bom 2013. © Bureau of 
meteorology. used with 
permission. further 
permission required for 
reuse.
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It is a tool to assist the consideration of ecosys-
tem groundwater requirements in natural 
resources management, including water plan-
ning and environmental impact assessment. 
The atlas was funded by the Australian govern-
ment and developed by a consortium of private 
and public organizations; it is hosted by the 
Bureau of Meteorology.19

Development of the atlas used a wide range 
of data, field surveys, observations, and aca-
demic and management expertise and required 
an extensive geographic information system 
framework to integrate these different sources 
of information. MODIS and Landsat observa-
tions played a critical role in the project, par-
ticularly for the many regions where detailed 
field observations were not available. 

Specifically, the accuracy of 250-meter res-
olution MODIS-derived estimates of evapo-
transpiration (Guerschman et al. 2009) was 
enhanced using GRACE observations, and the 
seasonal patterns of evapotranspiration were 
combined with rainfall information to identify 
areas likely to be reliant on external water 
inputs other than rainfall. The resulting infor-
mation was combined with inundation map-
ping (Guerschman et al. 2011) to identify 
surface water–fed ecosystems (Barron et al. 
2014). Furthermore, spatial classification of 
seasonal Landsat NDVI and wetness patterns 
were used to enhance mapping spatially in a 
subset of regions (figure B.7). 

Water Quality, Potential Harmful Algal 
Blooms, and Aquaculture
Several programs combine field data, models, 
and EO data in a data-data fusion—that is, nei-
ther a model-data fusion nor a model-data 
assimilation—to gain more insight into the 
phenomena observed or to predict potentially 
harmful algal blooms. The European Union 
and ESA Copernicus Programme’s website 
provides a substantial overview of what is pos-
sible in the near future for EO-based informa-
tion services and provides scoping information 
for current and near-future applications.20

40 percent of the time, compared with 1 percent 
of the time before water resources had started 
being developed. It also found that the impacts 
of climate change by 2030 are uncertain. How-
ever, surface water availability across the entire 
basin is more likely to decline than increase. 

The project intensively used rainfall-runoff 
models, together with past climate observa-
tions and future climate scenarios. It also used 
EO information to draw up a set of river water 
balance accounts (Kirby et al. 2008). These 
accounts were used to evaluate the uncertainty 
in preexisting river hydrology models that 
were used in the scenario studies (Van Dijk 
et al. 2008). The EO information used included 
the following:

• Irrigated cropping areas, derived by com-
bining NDVI patterns with agricultural 
statistics (BRS 2006)

• Dynamic data on the extent of permanent 
and semi-permanent surface water areas

• Estimates of evapotranspiration from open 
water, irrigated land, wetlands, and dry-
land (Guerschman et al. 2008, 2009). 

Satellite observations were also involved in 
determining forest cover and changes in forest 
cover (Furby 2002), which served as input for 
the scenario modeling.

National Atlas of Groundwater-Dependent 
Ecosystems
One of the issues of concern in groundwater 
management is how to avoid damage to 
groundwater-dependent ecosystems. The 
National Atlas of Groundwater-Dependent 
Ecosystems presents the current knowledge of 
groundwater-dependent ecosystems across 
Australia and was developed to improve under-
standing of these ecosystems and facilitate 
how they are considered in water resources 
management. The atlas displays ecological and 
hydrogeological information on ecosystems 
that are known to depend on groundwater and 
ecosystems that potentially use groundwater. 
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Southwest Shelf–Ocean, Mediterranean 
Sea, and Black Sea 

• Parameters and variables: ocean tempera-
ture, ocean salinity, ocean currents, sea ice, 
sea level, winds, ocean optics, ocean chem-
istry, ocean biology, and ocean chlorophyll

• Product type: forecast, near-real-time, 
multiyear, time-invariant products (either 
from observations or modeling).

The Australian eReefs Marine Water 
Quality Dashboard
Using the latest technologies to collate field-
based and EO-derived information and new 
and integrated modeling, eReefs has started 
producing powerful visualization, communi-
cation, and reporting tools.22 The Marine 
Water Quality Dashboard provides access to 
archival and real-time data on ocean color and 
sea surface temperature for the entire Great 
Barrier Reef.23 It provides reef information 

Marine Water Quality and Forecasting
The Copernicus Programme of the European 
Union and the ESA has been funding the 
MyOcean Programme since 2009. MyOcean 
(2009–12) and now MyOcean2 (2012–14) are 
committed to developing and running a 
European service based on a worldwide 
capacity for ocean monitoring and forecast-
ing, using observations data, modeling, and 
assimilation systems.21 MyOcean offers reli-
able and easy access to valuable core infor-
mation about the ocean. The service is 
intended to serve any user requesting generic 
information on the ocean, but especially 
downstream service providers, who use the 
information as input for their value added 
services to end users. The interactive cata-
logue allows users to select products accord-
ing to the following:

• Seven geographic areas: Global–Ocean, Arc-
tic Ocean, Baltic Sea, Atlantic-European 
Northwest Shelf–Ocean, Atlantic-European 

Australian Government
HOME

Bureau Home > Water Information > GDE Atlas Home > GDE Atlas Map

Water Information     Regulations     Standards     News and events     About

Quick Search

Current scale

Search

About the Atlas  |  text version  |  maximise map
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Legend

Advanced Search
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Groundwater dependent ecosystems.. .
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Base map
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State and Territory borders

Gridded Remote Sensing Layer
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No ecosystems analysed

NSW VIC QLD WA SA TAS ACT NT AUSTRALIA GLOBAL ANTARCTICA
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Bureau of Meteorology
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Figure B.7  Example 
View from the Atlas 
of Groundwater-
Dependent 
Ecosystems, Hosted 
by the Bureau of 
Meteorology
Source: © Bureau of 
meteorology. used with 
permission. further 
permission required for 
reuse.

Note: the likely presence of 
groundwater-dependent 
ecosystems is shown in dark 
colors around mont 
Gambier, a karst region on 
the border between Victoria 
and south Australia.
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A major objective of the Water Framework 
Directive is to establish an integrated, spatially 
explicit monitoring and management system 
for all waters. Information such as that pre-
sented in this atlas could support monitoring 
and management of Lake IJssel. In addition, 
this set of measurements and model results for 
2003, an unusually sunny, hot, and dry year, is 
ideal for investigating the relation between cli-
mate change (meteorological conditions, input 
by the IJssel River) and water quality in Lake 
IJssel.

Harmful Algal Blooms
The experimental Lake Erie Harmful Algal 
Bloom Bulletin was developed to provide a 
weekly forecast for microcystis blooms in 
western Lake Erie.24 Many different species of 
single-celled organisms live in the Great Lakes, 
including algae. When certain conditions are 
present, such as high levels of nutrients or 
light, these organisms can reproduce rapidly to 
produce a dense population of algae, called a 
bloom. Some of these blooms are harmless, but 
when the blooming organisms contain toxins, 
other noxious chemicals, or pathogens, they 
become harmful. Harmful algal blooms can 
cause the death of nearby fish, foul up nearby 
coastlines, and produce harmful conditions for 
aquatic life as well as humans. 

If a harmful bloom is detected, scientists 
will issue a forecast bulletin. The bulletin 
depicts the current location and future move-
ment of harmful algal blooms and categorizes 
the intensity on a weekly basis. This research 
project aims to determine the factors control-
ling microcystin production and develop 
methods for determining cyanobacteria 
blooms from satellite imagery. Imagery is cur-
rently available, but it is not yet able to discrim-
inate toxic microcystis blooms from other algal 
blooms within the images. The combined field 
data and satellite image data produced from 
the initial efforts are critical first steps in the 
characterization of bloom dynamics and the 
development of future bloom forecasting tools.

akin to that provided by the Bureau of Meteo-
rology for weather. This information could 
benefit government agencies, reef managers, 
policy makers, researchers, industry, and local 
communities. 

The eReefs Project delivers the following:

• Expanded and improved monitoring data 

• Measurement technologies and data deliv-
ery tools (for example, mobile and Internet 
tools)

• A suite of new and integrated models 
across paddock, catchment, estuary, reef 
lagoon, and ocean

• A framework to explore the impact of mul-
tiple factors such as temperature, nutrients, 
turbidity, and acidity, and to communi-
cate this information to those who will be 
affected by it

• An interactive visual picture of the reef and 
its component parts, accessible to all

• Citizen science initiatives to engage the 
broader community on the health of the reef

• Targeted communication products to 
allow the public to interact with the reef—
contributing monitoring information and 
learning about the reef.

Inland Water Quality
In 2005, the local management authority of the 
largest freshwater lake in the Netherlands, Lake 
IJssel, asked the Institute for Environmental 
Studies (Vrije Universiteit) to demonstrate the 
status of operational spatial monitoring and 
modeling. The results are summarized in an 
atlas of Lake IJssel (IJsselmeer). The atlas con-
tains water quality products from SeaWiFS for 
the year 2003. For the summer, it provides fort-
nightly median maps for chlorophyll-a; for the 
winter period, it contains monthly median 
maps. These data are compared to field data 
and model simulation results. The capacities of 
MERIS on monitoring chlorophyll-a are also 
illustrated in the special maps section. 
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scanner. These data also serve as input for 
growth models. Currently, Smartshell provides 
three basic services: (a) site selection, (b) real-
time monitoring, and (c) production monitor-
ing and projection. 

NOTES

 1. For information on the Dartmouth Flood 
Observatory, see http://floodobservatory.colorado 
.edu/.  

 2. For information on Global MODIS Flood 
Mapping, see http://oas.gsfc.nasa.gov/floodmap/.

 3. For information on Global Flood and Landslide 
Monitoring, see http://trmm.gsfc.nasa.gov/
publications_dir/potential_flood_hydro.html.

 4. For information on the Drought Monitor, see 
http://droughtmonitor.unl.edu/.

 5. For information on the European Drought 
Observatory, see http://edo.jrc.ec.europa.eu/.

 6. For information on Fieldlook, see http://www 
.mijnakker.nl/.

 7. For information on irriGATEWAY, see http://
www.irrigateway.net/.  

 8. For information on Crop Explorer, see http://
www.pecad.fas.usda.gov/cropexplorer/.

 9. For information on the interactive graphs and 
maps, see http://www.pecad.fas.usda.gov/
cropexplorer/global_reservoir/.

 10. For information on GeoGLAM Crop Monitor, see 
http://www.geoglam-crop-monitor.org/.

 11. For information on the NOHRSC National Snow 
Analysis, see http://www.nohrsc.noaa.gov/nsa/.

 12. For information on the National Operational 
Hydrologic Remote Sensing Center, see http://
www.nohrsc.noaa.gov/nsa/.

 13. For information on the China Meteorological 
Administration, see http://cmdp.ncc.cma.gov.cn/
Monitoring/en_snow_ice.php. 

 14. For information on the Regional Centre for 
Hydrology in Central Asia, see http://www.rch-
aralsea.ch/index.html.

 15. For information on the NLDAS, see http://ldas 
.gsfc.nasa.gov/nldas.

 16. For information on the GLDAS, see http://ldas 
.gsfc.nasa.gov/gldas/. 

 17. For information on the AWRA, see http://www 
.bom.gov.au/water/awra.

 18. For information on the Asia-Pacific Water 
Monitor, see http://eos.csiro.au/apwm.

 19. For information on the atlas, see http://www.bom 
.gov.au/water/groundwater/gde/.

The Applied Simulations and Integrated 
Modelling for the Understanding of Toxic and 
Harmful Algal Blooms (ASIMUTH) aims to 
develop forecasting capabilities to warn of 
impending hazardous blooms in five European 
countries.25 Through the ASIMUTH project, 
scientists and industry from five countries 
along Europe’s Atlantic Margin have formed a 
network to produce the first realistic advisory 
and forecasting capability as a downstream 
service to the European aquaculture industry. 
The early warning of severe blooms will allow 
fish and shellfish farmers to adapt their culture 
and harvesting practices in time, so as to reduce 
potential losses. 

ASIMUTH is the first step toward develop-
ing short-term hazardous algal bloom alert 
systems for Atlantic Europe. This will be 
achieved using information on the most cur-
rent marine conditions (weather, water char-
acteristics, toxicity, harmful algal presence), 
combined with local numerical predictions. 
ASIMUTH will use geospatial products from 
the MyOcean project to initiate the models 
developed during the project. Experts from 
each country will evaluate data from the moni-
toring programs, satellite images,  and model 
output to produce bulletins to inform the pub-
lic and the aquaculture sector. The bulletins 
produced will present the current state of haz-
ardous algal blooms in each area and the likeli-
hood of a toxic or harmful event of target 
species in the following week.

Aquaculture
Smartshell is a real-time, online tool that pro-
vides information on the water quality of 
coastal areas, aimed at the aquaculture sec-
tor.26 It uses maps of chlorophyll and sediment 
concentrations as well as transparency derived 
from satellite data and ancillary data such as 
wind force and direction data, water depth, 
and temperature. If required, frequent and 
flexible field measurements can be done with 
the Water Insight Spectrometer with three 
radiometers (WISP-3) handheld water quality 

http://floodobservatory.colorado.edu/
http://floodobservatory.colorado.edu/
http://oas.gsfc.nasa.gov/floodmap/
http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html
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http://droughtmonitor.unl.edu/
http://edo.jrc.ec.europa.eu/
http://www.mijnakker.nl/
http://www.mijnakker.nl/
http://www.irrigateway.net/
http://www.irrigateway.net/
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