Recent GEO AquaWatch Webinars

GEO AquaWatch Project Update Lightning Talks Webinar Series.

A 3 week series offering an opportunity to hear various speakers provide AquaWatch Community project updates in a series of lightning round talks!  Many thanks to the Group on Earth Observations for hosting the videos on their YouTu.be Channel!

 

  May 19 –Coastal Transitional/Estuaries Theme – 2pm UTC

14:00 UTC Welcome & Introductions     Host: Blake Schaeffer, USEPA, GEO AquaWatch Management Team and WG 3 Co-Chair; Moderators: Dulcinea Avouris, Post-doctoral Scholar at the University of California, Merced; Dalin Jiang, Research Fellow, University of Stirling, UK; and Sumita Bhattacharyya, PhD Candidate, Ashoka Trust for Research in Ecology and the Environment, India.

14:05 UTC   Adriana Maria Constantinescu, National Institute of Marine Geology and Geoecology (GeoEcoMar), Romania, DANUBIUS-RI: International Centre for Advanced Studies on River-Sea Systems – Observation Node, link between EO and in-situ measurementsCo-authors: Andrew Tyler, Department of Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom; Steve Groom, Plymouth Marine Laboratory, Plymouth, United Kingdom; Adrian Stanica, GeoEcoMar & DANUBIUS-PP Consortium

Q&A for DANUBIUS

14:20 UTC   Steve Groom, Plymouth Marine Laboratory, United Kingdom, CERTO Project Progress and the work of many co-authors too numerous to list

14:30 UTC Thomas Jordan, Plymouth Marine Laboratory, United Kingdom, Automation and retrieval of remote-sensing reflectance observed from ships-of-opportunity: new directions from the MONOCLE project. Co-authors: Stefan Simis, Plymouth Marine Laboratory; Philipp Grötsch, Gybe;  John Wood, Peak Design.

14:40 UTC Xiaohui Zhu, Boston University, USA, A simple method to determine the apparent quantum yield matrix  of CDOM photobleaching in natural waters. Co-authors: William L. Miller, University of Georgia; Cédric G. Fichot, Boston University.

14:50 UTC Christiana Ade, University of California Merced, USA, Assessing Fish Habitat Potential and the Effects of an Emergency Barrier on Turbidity in a Drought Impacted Estuary Using Satellite Remote Sensing.  Co-authors: Erin Hestir, University of California Merced  and Christine M. Lee, NASA Jet Propulsion Laboratory.

15:00 UTC Ana B. Ruescas, Brockmann Consult, Germany, SNAP Tools for Coastal and Inland Water Monitoring.  Co-authors: Kerstin Stelzer, Marco Peters, Roland Doerffer, Jorrit Scholze, Carole Lebreton and Carsten Brockmann  all of Brockmann Consult.

15:10-15:30 UTC Presenter Q&A and Discussion

May 11th –Inland Waters Theme – 2pm UTC

WATCH VIDEOS HERE!

14:00 UTC Welcome & Introductions

Host: Andrew Tyler, University of Stirling, GEO AquaWatch Management Team and WG 5 Co-Chair; Moderators: Megan Coffer, Post-doctoral research fellow, U.S. EPA; PhD Candidate, North Carolina State University and Mortimer Werther, PhD Candidate, University of Stirling, UK

14:05 UTC Daniel Odermatt, Eawag, Switzerland, In situ to in orbit: Optical properties of Swiss lakesCo-authors: Abolfazl Irani Rahaghi (Eawag), Camille Minaudo (EPFL), Alfred Wüest (EPFL/Eawag)

14:15 UTC Priyanka Jamwal, Centre for Environment and Development, Ashoka Trust for Research in Ecology and the Environment (ATREE), India, Data transparency: Moving from grab sample to real-time water quality monitoringCo-authors: Veena Srinivasan, ATREE

14:25 UTC Leif Olmanson, University of Minnesota, United States, Advanced Remote Sensing Methods for Automated Lake Water Quality Mapping. Co-author: David Porter, University of Minnesota

14:35-UTC 5 minute break

14:40 UTC Petra Philipson, Brockmann Geomatics, Sweden, CyanoAlert – Space Based Cyanobacteria Information & Services. Co-authors: Carole Lebreton, Brockmann Consult; Kerstin Stelzer, Brockmann Consult;  Eirini Politi, Brockmann Consult;  Susanne Thulin, Brockmann Geomatics.

14:50 UTC Peter Hunter, University of Stirling, United Kingdon, The UK Lakes Observatory: operational water quality products from Sentinel-2 MSI dataCo-authors: Andrew Tyler, Vagelis Spyrakos, Adam Varley, and Matthew Blake, University of Stirling; Claire Neil, Scottish Environment Protection Agency.

15:00-15:30 UTC Presenter Q&A and Discussion

   


April 29th – Marine Coastal Theme –  2pm UTC

Watch the Week 1 videos here!

14:00 UTC   Welcome & Introductions      Host: Steven Greb, GEO AquaWatch Director; Moderators: Marie “Cindy” Lebrasse, ORISE fellow, USEPA, Ph.D. Candidate at North Carolina State University, Veloisa Mascarenhas, Research Fellow, University of Stirling, Scotland, UK, and Chris Lee, Ph.D. Candidate, Rochester Institute of Technology, USA.

14:05 UTC   Avi Putri Pertiwi, German Aerospace Center (DLR), Germany, Coastal turbid zone detection using Sentinel-2 imageries on Google Earth Engine cloud platformCo-Authors: Dimosthenis Traganos and Chengfa Benjamin Lee, German Aerospace Center (DLR), Germany

14:15 UTC   Dimitry Van Der Zande, RBINS, Belgium, The New High-Resolution Coastal Service within CMEMSCo-Authors: Kerstin Stelzer, Brockmann Consult; Martin Böttcher, Brockmann Consult; Carole Lebreton, Brockmann Consult; Joao Cardoso dos Santos, RBINS; Sindy Sterckx, VITO; Quinten Vanhellemont, RBINS; Kevin Ruddick, RBINS; and Carsten Brockmann, Brockmann Consult

14:25 UTC   Veronica Lance, NOAA, USA, NOAA CoastWatch/OceanWatch/PolarWatch makes the link from aquatic satellite data products to applications and information.

14:35 UTC   Jordi Sandalinas, Open University of Catalonia, Spain, Maritime earth observation and the EU Copernicus Regulation: legal and economic benefits, a preliminary study.

14:45-UTC  5 minute break

14:50 UTC   Steef Peters, Water Insight, Netherlands, Launch of a Commercial service Platform for User-relevant Coastal water monitoring services based on Earth Observation (CoastObs)Co-authors: Federica Braga, CNR. Vittorio E. Brando, CNR. Tony van der Hiele, HZ University of Applied Sciences. Annelies Hommersom, Water Insight. Pierre Gernez, University of Nantes. Laurent Barillé, University of Nantes. Laura Zoffoli, University of Nantes. Anne-Laure Barillé, Bio-Littoral. Nicolas Harin, Bio-Littoral. Luis González Vilas, University of Vigo. Jesus M. Torres Palenzuela, University of Vigo. Mariana Mata Lara, Geonardo. Andrew Tyler, Stirling University. Peter Hunter, Stirling University. Evangelos Spyrakos, Stirling University. Caitlin Riddick, Stirling University. Shenglei Wang, Stirling University. Dalin Jiang, Stirling University. Jasper van Houcke, HZ University of Applied Sciences. Lazaros Spaias, Water Insight

15:00 UTC   Els Knaeps, VITO, Belgium, Remote detection of plastic litter in a marine environment. Co-author: Mehrdad Moshtaghi, VITO

15:10-15:30 UTC  Presenter Q&A and Discussion

   Link to Recording (Coming soon) Link to Q&A (Coming soon)


 

April 21, 2021 2pm UTC

Title:  Spectral decomposition using Varimax-rotated, principal component analysis: Transitioning to the Google Earth Environment  by Joseph Ortiz, Kent State University, OH

Abstract:  Varimax-rotated, principal component analysis (VPCA) provides a means of linearly decomposing multispectral and hyperspectral images. This is an important consideration because all remote sensing pixels represent a mixture of spectral responses from the materials present in the pixel. For aquatic systems that mixing occurs at the macroscopic level. While decreasing spectral and spatial dimentions enhances resolution, it cannot fully resolve the mixed pixel problem for that reason. VPCA is a soft unsupervised classification method that partitions image variance into algal and cyanobacterial functional classes, identifies suspended sediment, and pigment degradation products in two complementary way: based on their spectral response or spectral fingerprint and their spatial pattern. The method has been applied to multispectral and hyperspectral sensors in handheld, aerial and orbital applications. This talk will compare several applications and discuss steps currently underway to translate VPCA to the Google Earth Engine environment.
 

Speaker Bio: Dr. Ortiz earned the Bachelor of Science degree, with honors, from Brown University, Major: Aquatic Biology; and his Ph.D. in Oceanography from  Oregon State University, Corvallis OR, Major: Marine Geology.  “I believe that advances in scientific fields often occur at the interfaces between well established disciplines. Because of this, I have intentionally directed my research objectives toward interdisciplinary paths.  For example, my expertise in aquatic biology allows me to study the response of marine microplankton to their environment to improve the quality of paleoclimate reconstructions. I use my expertise in core and wireline logging methods like diffuse spectral reflectance to quantify physical properties of  deep-sea sediments and to determine provenance of archeological artifacts. Advances in one area often help me to fine tune or develop new approaches for use in other aspects of my research.My research background has provided me with a broad and powerful set of tools with which to attack problems using a multi-dimensional, interdisciplinary approach. My interest in a variety of research topics allows me to continuously refine existing skills while developing new ones. These skills and experiences enable me to conduct significant research on topics ranging from climate change to water quality.  I have received funding for my research through the National Science Foundation, the Ocean Drilling Program, Ohio SeaGrant, NOAA, the KSU Farris Family Innovation Fund for Early Achievement, and the KSU University Research and Teaching Councils.” Find out more here.         View Powerpoint Slide Deck here

 


March 9, 2021  – 2pm UTC 

Title: Developing a roadmap for future Copernicus water services  by Tiit Kutser, Estonian Marine Institute, University of Tartu, Estonia

Abstract: Copernicus, the European Union’s Earth observation programme, is currently providing services in six domains – Atmosphere, Marine, Land, Climate Change, Security and Emergency. Data and products related to water, hydrology and hydrodynamic processes are already delivered under several Services. However, they are provided separately and for specific purposes without considering the global understanding and better representation of the water cycle from regional to global scale. Therefore, the European Commission had a call for a coordination and support action which should develop a Copernicus mission exploitation concept for water. The winning consortium – Water-ForCE, will develop a Roadmap for the water component for the future Copernicus services. This Roadmap will address the current disconnects between remote sensing and in situ observations, deliver clarity in terms of the needs and expectations of the public and private sectors of the core Copernicus Program and the wider research and business innovation opportunities. The Roadmap will contain recommendations at very different levels. For example, the political level recommendations should contain the analysis whether the water services should be split between different services (as they are now), is it reasonable to consolidate all inland (and coastal) water services into one Copernicus Service, or are there other options. On the other hand the Roadmap will contain many practical things like recommendations for future Copernicus missions in order to fulfil better inland and coastal water related needs (e.g. extra bands on Sentinel-2E and other sensors), enlarged service portfolio with higher level biogeochemical products, and a plan for closer cooperation between remote sensing, in situ, and modelling communities in order to build up and optimal network that provides necessary information about inland and coastal waters to policy makers, managers researchers and general public. Significant part of this work is related to inland and coastal water quality. Therefore, the global GEO AquaWatch community is very welcome to have their input into the formation of the future Copernicus Water Services.
 
Speaker Bio: Tiit Kutser is a Professor and Head of Remote Sensing and Marine Optics Department in the Estonian Marine Institute, University of Tartu, Estonia. He got his PhD in 1997 with the thesis “Estimation of water quality in turbid inland and coastal waters by passive optical remote sensing”. He was a post-doc in CSIRO, Australia and has worked as a Senior Researcher or Visiting Professor in Finland (Finnish Environment Institute and University of Helsinki), Sweden (Uppsala University and Lund University) and Switzerland (EPFL). He was two terms (2014-2020) an Associate Editor for coastal and inland waters in the Remote Sensing of Environment. His research interests include developing of methods and algorithms for mapping different water quality parameters in complex coastal and inland waters, mapping coral reefs and other shallow water habitats, recognition and quantitative mapping of potentially harmful blooms, the role of lakes in the global carbon cycle and many associated topics.
Video link (coming soon!)  Chat text (coming soon!)

 

January 14, 2021 2pm UTC

Title: Towards Macroscale Application of Inland Water Remote Sensing by Simon Topp, University of North Carolina – Chapel Hill

Abstract:
Remote sensing has the potential to vastly improve our ability to observe and monitor freshwater resources. While work on the subject dates back more than fifty years, it’s only recently that publications have moved from focusing on algorithm development to the implementation of those algorithms to address challenging science and management questions at large spatiotemporal scales. In this talk, we will explore examples of this macroscale research, including examinations of global river ice cover, national analyses of U.S. lake water clarity and seasonality, and patterns of basin-wide suspended sediment for over 100,000 km of U.S. rivers. Accompanying these examples, we will explore the resources that make applying remote sensing to macroscale questions more accessible than ever. AquaSat, along with similar databases like LIMNADES, provides hundreds of thousands of coincident satellite and field observations to develop and test models for key water quality parameters like chlorophyll-a, suspended sediments, and colored dissolved organic matter. These databases are supplemented by new resources like LimnoSat-US, which contains over 22 million remote sensing observations of U.S. lakes dating back to 1984. Such datasets reduce computational and technical barriers for non-remote sensing experts to incorporate remote sensing into their work. While challenges to implementing remote sensing as a tool for macroscale freshwater research still exist, we are currently in the middle of a paradigm shift moving away from localized analyses towards generalizable models, real-time spatially explicit monitoring, and increased understanding of the complex global dynamics of our freshwater systems.
 

Speaker Bio: 

Simon Topp is a PhD candidate completing his degree at the University of North Carolina at Chapel Hill. His research focuses on applying data science and machine learning approaches to large-scale analyses of water resources. This work includes examining long-term patterns in U.S. lake clarity and lake phenology, developing freshwater remote sensing datasets, and examining anthropogenic impacts on freshwater landscapes across the world. Through this work, Simon tries to make remote sensing more accessible to limnologists and ecologists by reducing technical barriers to incorporating satellite observations into research. Simon has led and/or contributed to the development of datasets such as LimnoSat-US and RiverSR, which contain over 35 years of remote sensing observations for all U.S. lakes and rivers respectively, as well as AquaSat, a large labelled U.S. database of coincident field and satellite observations of key water quality parameters. Simon received his Bachelor’s and Master’s degrees from Bard College in New York where he focused on the impacts of landuse change to water quality.


Video       Chatlog
 

 

December 8, 2020 2pm UTC

Title: Introduction to GEO Citizen Science Overview and Community Discussion by Uta Wehn with commentary by Lea Shanley, Co-Directors of GEO Citizen Science

Abstract:  The webinar will be a brief overview of the GEO Citizen Science Community Activity and their opportunities in the water quality realm, followed by an open community discussion of synergies GEO Citizen Science might have with GEOAquaWatch in assisting water quality project outcomes.
 
Speaker Bios:
Uta Wehn – Dr. Uta Wehn is Associate Professor of Water Innovation Studies and acting Chair of the Knowledge & Capacity Development group at IHE Delft. She is a social scientist from the field of science, technology & innovation studies, with a background in ICTs, drawing on more than 20 years of combined industrial, research and international development experience. Her work at the intersection of data and knowledge co-creation, digital innovations and water and environment focuses on the social dynamics of innovation and how to harness digital transformations for participatory environmental governance and sustainable development.  She leads the acquisition and implementation of large interdisciplinary research and capacity development projects. Her current Citizen Science projects include case studies in Europe, the Middle East and Africa, using LivingLabs principles and tailoring user-centred and multi-stakeholder co-design methods to Citizen Science. She has extensive experience with teaching, MSc and PhD supervision and the facilitation of multi-stakeholder interactions in a range of thematic settings and cultural contexts.  She has over 70 publications in peer-reviewed journals, international conference proceedings and book chapters in the areas of citizen science, citizen observatories and environmental monitoring; participatory environmental governance; stakeholder engagement; co-design methods; business modelling; capacity development and knowledge management; data and knowledge sharing; social innovation and water innovation dynamics. She is a member of several high level international initiatives, incl. the OECD Water Governance Initiative where she has represented IHE Delft since the start of the initiative in 2013. She co-chairs the GEO CITSCI Community Activity of the Group on Earth Observation and the CSGP Community of Practice on Citizen Science & Open Science, and she is a member of the Board of Directors of the European Citizen Science Association.
 
Lea Shanley –  Trained as a geospatial data scientist and policy expert, Dr. Shanley’s research has focused on improving government services and empowering communities through open and participatory innovation, new technologies and social media. Previously, she was a  Presidential Innovation Fellow at NASA, and founding director of the Commons Lab of the Science and Technology Innovation Program at the Wilson Center. She is one of the chief organizers and co-founders of the Federal Community of Practice on Crowdsourcing and Citizen Science, a groundbreaking effort to enable federal agencies to engage the public in collective problem solving. In 2009, Lea was an AAAS Congressional Science Fellow in the U.S. Senate, crafting legislation on satellite Earth observations, oceans, and hazards. Lea also helped launch the new Citizen Science Association and Wisconsin Geographic Information Coordination Council. She conducted her PhD research in Environmental Monitoring at the University of Wisconsin-Madison, and holds an MS in astronomy and BS in physics.
 
VIDEO     Chat

Title: LIMNADES Database Demonstration

Presenter: Adam Varley, University of Stirling, Scotland

Date: November 12, 2020 2pm UTC

Abstract  – This will be a hands-on Demonstration of the Revamped LIMNADES Database. The LIMNADES (Lake Bio-optical Measurements and Matchup Date for Remote Sensing) data repository was a concept formed during the GloboLakes research project, which ended in 2018. The database is still maintained at the University of Stirling and poised to become a preferred data repository for inland water quality Calibration/Validation data.  The purpose of the LIMNADES project is to provide a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community.

LIMNADES is open to new ideas and developing data avenues, such as the collection of citizen science data, but it currently provides a repository for:

      1. Inherent and apparent optical property datasets and associated water constituent measurements;
      2. In-situ water constituent measurements for satellite validation.

Speaker Bio – Dr. Varley is the LIMNADES Database Manager.  He has a general background in environmental sciences, with a first class undergraduate degree in environmental chemistry. During his thesis he was introduced to the field of environmental radioactivity that would unwittingly form the basis of my career. His subsequent PhD in environmental radioactivity changed my focus more towards the physical/computational sciences and remote detection of radioactive sources. The objective of his PhD was to develop methods to process gamma-ray spectrometry data to estimate the activity and buried depth of radioactive sources. The data processing element relied heavily on Machine Learning techniques. The developed method was used to characterise radioactive contamination at sites contaminated with 226Ra and 137Cs.  His current research is dedicated to developing and implemented detection system for the Environmental Radioactivity Lab here at Stirling. This involves using gamma-ray spectrometry units on a number of platforms such as carbourne and handheld systems.  Another research area  is the use large volume detectors to estimate the risk posed by plough-induced soil erosion at archaeological sites. This work is a component of the larger European project called the CLIMA (Cultural Landscape risk Identification, Management and Assessment) project, which aims to protect ancient monuments and subsurface archaeological  structures.   

Video


Title: Whatenvironmentalfactorsinfluencetheconcentrationoffecalindicatorbacteriain groundwater?InsightsfromUgandaandBangladesh

Presenter: Chloé Poulin, Aquaya

Date: October 29, 2020  2pm UTC:

Abstract:

While2.2billionpeopledonothavesafely-managedwaterservices,SustainableGoal6.1
callsforuniversalaccesstosafewaterby2030.WaterQualityinformationiscriticaltoguide
decisiononsourcesprotectionortreatmentapproaches.Insufficienthumanandfinancial
resourcesinlow-incomecountriesmakethemonitoringofallwatersuppliesnearly
impossible.Understandingtheprimaryfactorsthatcontributetomicrobialwaterquality
degradationcouldhelpidentifyrisk-pronewatersuppliesandmaythereforebean
alternativetosystematicmonitoring.
Thisstudycombinessatellite,censusandhydrologicaldatawith5013secondary
measurementsofgroundwaterqualityinUgandaandBangladesh.Wefirstdevelopeda
conceptualframeworkrepresentingpotentialriskfactorstomicrobialgroundwaterquality
andtheirinteractions.Weconsideredfactorsassociatedwithhumanactivities(proximityto
cities,populationdensity,landcover,livestockdensityanddomesticanimals),climateand
hydrogeology(temperature,precipitation,runoff,soiltype,floodingandwatertabledepth),
non-anthropogenicsourcesofcontamination(wildlifefeces,environmentalreservoirsof
fecalindicatorbacteria),aswellaswaterandsanitationinfrastructure.Wecollected
satellite-derivedgeospatialdatasetsforsevenofthethirteenriskfactorslistedinthe
conceptualframework:temperature,precipitation,runoff,populationdensity,landcover,
livestockdensity,andtimetocity.Weusedbinomialandlogisticregressiontoquantify
associationsbetweenthesefactorsandconcentrationsoffecalindicatorbacteriain
groundwater.
InUganda,wefoundthatmicrobialcontaminationwasbothmorefrequentandhigherin
areaswithdenserpopulation(p<0.001;RC=1.28;OR=1.27),higherrunoff(p<0.001;RC=1.22;
OR=1.37),highercroplandcoverage(p=0.05;RC=1.20;OR=1.47),shortertimetocity
(p<0.001;RC=0.69;OR=0.66),andlowerforestcoverage(p<0.001;RC=0.83,OR=0.70).
Microbialcontaminationwasalsomorelikelyinareaswithhigherprecipitation(p<0.001;
OR=1.14)andhigherlivestockdensity(p<0.001;OR=1.17).InBangladesh,microbial
contaminationwasbothmorefrequentandhigherinareaswithhigherlivestockdensity
(p<0.001;RC=1.46;p=0.05;OR=1.11),higherforestcoverage(p<0.001;RC=1.28;OR=1.23),
higherprecipitation(p<0.001;RC=1.27;0R=1.44)andlowercroplandcoverage(p<0.001;
RC=0.75;OR=0.80).Inaddition,contaminationlevelswerehigherinareaswithhigher
temperatures(p<0.001;RC=2.14),lowerartificiallandcover(p<0.001,RC=0.82)andshorter
timetocity(p<0.001;RC=0.79).Theseresultssuggestthatanthropogenicactivitiesarea
goodindicatorofmicrobialgroundwatercontaminationinUganda,butnotasclearlyin
Bangladesh,whereforestcoverageandonlysomeindicatorsofanthropogenicactivities
werecorrelatedwithcontamination.
Inbothcountries,wederivedandmappedagroundwatercontaminationindextohelp
decision-makersidentifyareasmorepronetofecalcontamination.Ourresultsshowthat
63%ofthepopulationinUgandaand34%ofthepopulationinourtwostudyprovincesin
Bangladeshliveinareaswiththehighestcontaminationindices.
SpeakerBio:
Chloéisworkingondataanalysisandresearchtoimprovemicrobiologicalwaterquality.In
addition,sheisinvestigatingnewtechnologiesandmodelswhichcanbedevelopedinAfrica
toimprovewaterqualityandwaterqualitymonitoring.Previouslyshewasadoctoral
studentatAixMarseilleUniversitywheresheworkedonhistoricalandcurrentgroundwater
rechargeinLakeChadBasin,andinteractionsbetweensurfacewaterandgroundwater.
ChloéhasaPhDinEnvironmentalSciencesfromAixMarseilleUniversityandaMaster’s
degreeinHydrogeologyandBachelor’sdegreeinGeosciencesfromtheUniversityof
Montpellier
 

Title: A Virtual Geostationary Ocean Color Sensor to Analyze the Coastal Optical Variability

Presenter: Marco Bracaglia , CNR

Date: September 17, 2020 2pm UTC

Abstract: in the coastal environment the optical properties can vary on temporal scales that are shorter than the near-polar orbiting satellite temporal resolution (~1 image per day), which does not allow capturing most of the coastal optical variability. The objective of this work is to fill the gap between the near-polar orbiting and geostationary sensor temporal resolutions, as the latter sensors provide multiple images of the same basin during the same day. To do that, a Level 3 hyper-temporal analysis-ready Ocean Color (OC) dataset, named Virtual Geostationary Ocean Color Sensor (VGOCS), has been created. This dataset contains the observations acquired over the North Adriatic Sea by the currently functioning near-polar orbiting sensors, allowing approaching the geostationary sensor temporal resolution. The problem in using data from different sensors is that they are characterized by different uncertainty sources that can introduce artifacts between different satellite images. Hence, the sensors have different spatial and spectral resolutions, their calibration procedures can have different accuracies, and their Level 2 data can be retrieved using different processing chains. Such differences were reduced here by adjusting the satellite data with a multi-linear regression algorithm that exploits the Fiducial Reference Measurements data stream of the AERONET-OC water-leaving radiance acquired at the Acqua Alta Oceanographic Tower, located in the Gulf of Venice. This work aims to prove the suitability of VGOCS in analyzing the coastal optical variability, presenting the improvement brought by the adjustment on the quality of the satellite data, the VGOCS spatial and temporal coverage, and the inter-sensor differences. Hence, the adjustment will strongly increase the agreement between the satellite and in situ data and between data from different near-polar orbiting OC imagers; moreover, the adjustment will make available data traditionally masked in the standard processing chains, increasing the VGOCS spatial and temporal coverage, fundamental to analyze the coastal optical variability. Finally, the fulfillment by VGOCS of the three conditions for a hyper-temporal dataset will be demonstrated in this work.

Biography: Dr. Marco Bracaglia graduated in Physics on 27/05/2016 at the University of Rome Tor Vergata. He attended a Ph.D. course in Environmental Phenomena and Risks at the Parthenope University of Naples and the CNR-ISMAR of Rome Tor Vergata. He completed the Ph.D. with the dissertation of its thesis “A Virtual Geostationary Ocean Colour Sensor to observe short term variations in particulate matter in the coastal environment” on 21/05/2020.  He is currently a research fellow at the CNR-ISMAR in Rome Tor Vergata and technical manager of the Ocean Colour Thematic Assembly Center (OC-TAC) in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). His scientific interests are Ocean Color, remote sensing, bio-optical dynamics in optically complex waters, data processing, calibration and validation of Ocean Color satellite data.

Video      and      Chatlog


Title: Spectral enhancements with contra-bands: A case study of the OLI/Landsat 8 orange contra-band and its application for inland water remote sensing.

Presenter: Alexander Castagna, Department of Biology, Ghent University

Date: June 18, 2020, 2pm UTC

Abstract: Recently, a new method was developed to extract additional spectral information from a set of overlapping wavebands (Castagna et al. 201820192020). This spectral enhancement technique was termed contra-band, and is based on the extraction of information that was measured, but is mixed with information from a broader spectral region. Therefore, it has potential to add independent information to the band set of specific sensors. The method is generic and can be analytical if waveband properties are optimal, or semi-analytical otherwise. We will explore this concept in view of available sensors, with focus on the semi-analytical contra-band possible for OLI/Landsat 8, that can provide independent information in the orange spectral region (590-635 nm) over turbid inland waters. The OLI orange contra-band represents the first global open dataset of high spatial resolution information in the orange spectral region. We will discuss performance analysis, new validation data from in situ hyperspectral networks, and applications related to detection cyanobacterial blooms and quantification of phycocyanin concentration at high spatial resolution.
 
Bio: Alexandre Castagna is a PhD candidate at the Biology Department of Gent University, Belgium, working both with multi and hyperspectral data for water quality estimation in small inland water bodies. He obtained his MSc. degree in a multidisciplinary context, linking land and atmospheric processes (dust emission and transport) to ocean biogeochemistry in the Southern Ocean. He also worked with coastal ecosystem dynamics, specifically the effect of wind driven water masses intrusion on primary production and tidal impact on phytoplankton diversity in small bays. He has an interest both in the physical and biological components of hydrology optics, including in situ spectroscopy methods, Monte Carlo simulation, IOP inversion and HAB detection/quantification.
Video      and       Chatlog 
 

Title: Observing Coastal Ocean Processes from Space at Hourly Frequency with GLIMR:  NASA’s 5th Earth Venture Instrument

Presenter: Dr. Joe Salisbury, University of New Hampshire

Date: May 21, 2020, 2pm UTC

Abstract: GLIMR is hyperspectral radiometer that will be launched in geostationary orbit to study coastal ecosystems that are under pressure from population growth and changing climate.  Our primary science centers on two questions: 1) How do physical processes that vary at timescales from hours to days impact the rates and fluxes of materials within and between aquatic coastal ecosystems? and 2) How do fluxes and rates within and between aquatic coastal ecosystems affect the formation, magnitude and trajectory of harmful algal blooms (HABS) and impact ecosystem and human health? To help address these questions, GLIMR will collect 141 bands of data in the visible to near infra-red (350-1020nm) with ~hourly coverage in our primary region of interest, the Gulf of Mexico.  This high-density 4-dimensional data stream, (U, V, time, hyperspectral) will require creative new combinations of in-water data and advanced numerical methodologies in order to maximize the science value. We will present an overview of the science, instrument capabilities and data processing, as well as ideas on how advanced in-water assets and processing solutions could benefit the GLIMR mission.

Speaker Bio: Dr. Salisbury’s interests focus on the biogeochemistry and ecology of coastal regions, particularly those influenced by riverine processes. He is presently working on two strands of research. The first seeks to characterize distributions of carbon dioxide, air-sea carbon exchange, productivity and acid stress in freshwater-influenced coastal regions. The second strand involves the use of data from a variety of space-borne sensors to characterize net community productivity and carbon exchanges in coastal waters. For these projects his team uses a variety of remotely sensed data including ocean color, sea surface temperature and microwave radiometry. He is currently the principal investigator of a NASA satellite mission called the Geostationary Littoral Imaging and Monitoring Radiometer, scheduled to launch in 2026.  This sensor will use ocean color to study coastal ecosystems.  He is also co-PI of the NASA scoping study, Arctic-COLORS which seeks to implement a series of campaigns to the coastal Arctic to explore land to ocean interactions. Our UNH Coastal Carbon Group maintains several autonomous data collecting assets in the Gulf of Maine and is active in cruise campaigns throughout the western Atlantic.

Video  Chatlog Publications (coming soon!)


 

Title: Arctic COLORS : Arctic-COastal Land Ocean inteRactionS

Presenters: Dr. Peter Hernes, University of California-Davis

Date: May 8, 2020, 2pm UTC/10am EDT (New York)

Abstract: Arctic-COLORS is a proposed NASA field campaign that is expected to start in 3-6 years and investigates the impact of changing terrestrial fluxes of materials on near-coastal ocean biogeochemistry in the study region from the Yukon River to the Mackenzie River. In preparation for Arctic-COLORS, NASA is funding preliminary projects to collect data to characterize the current state of the coastal Arctic that will be invaluable for measuring change when Arctic-COLORS comes online, and to test fundamental ideas about the transfer of riverine materials to the coastal zone that will help to shape the Arctic-COLORS science plan. This talk will primarily focus on one of those pre-Arctic-COLORS projects, in which we set out to 1) measure current conditions primarily in the Yukon River delta but also collected samples on the north slope of Alaska, 2) characterize the transformation of riverine materials from the head of tides through the delta and out to salinity, and 3) refine and develop algorithms for local Arctic water quality parameters and concentrations from remote sensing, with the ultimate goal of using those algorithms for hindcasting with existing remote sensing data. In addition to a multitude of optical measurements, our dataset also includes dissolved and particulate organic carbon, lignin, chlorophyll, salinity mixing experiments, microbial and photochemical oxidations experiments, and eventually high resolution mass spectrometry data. Understanding how river materials are transformed will allow Arctic-COLORS to take full advantage of long term datasets from programs like the Arctic Great Rivers Observatory.

Speaker Bio: Peter Hernes uses biomarkers (primarily lignin) in conjunction with several other bulk measurements to characterize sources, processes, and fates of organic matter in rivers out to the coastal ocean. In particular, he is interested in how river chemistry maps back to land use, landscape sources and processes, and constant change. He received his masters and PhD in chemical oceanography at the University of Washington in Seattle and did postdoctoral work at the University of South Carolina in Columbia before landing at the University of California – Davis is 2002, where he is a Professor of Hydrology and Aqueous Geochemist.

Video (Webinar Starts at 23mins 30 secs into the recording) Chatlog


Title: Airborne drone-based monitoring of the water quality

Presenters: Dr. Liesbeth De Keukelaere and Mr. Robrecht Moelans, VITO

Date: March 26, 2020, 2pm UTC

Abstract:  Recent advances in Remotely Piloted Aircraft Systems (RPAS), or airborne drones, have created an additional monitoring platform that provides an opportunity to capture spatial, spectral and temporal information that could benefit a wide range of applications. This with a relative small investment, especially compared to the cost of manned airborne systems or satellite missions. However, the conversion of the raw data into physically meaningful values, like water-leaving reflectance, turbidity or chlorophyll concentrations is not so straightforward. This presentation will show the challenges faced when using airborne drone data over water surfaces through experiences from different field campaigns, organized in the framework of the MONOCLE H2020 research and innovation project.

Speaker Bios – Dr. De Keukelaere: A young researcher with a Master degree in Bio-Science Engineering, Liesbeth De Keukelaere’s focus is on soil, water and Earth Observation. During her first year after graduation, Liesbeth worked on spectral unmixing techniques to distinguish different tree species within one pixel. She then shifted her attention to water applications, investigating remote sensing’s potential for water quality monitoring in inland, coastal and transitional waters. In the summer of 2016 she was selected to participate with the IOCCG Summer Lecture Series: Frontiers in Ocean Optics and Ocean Colour Science, and in autumn 2016 she followed an introductory course on Aquaculture at Odisee Hogeschool (Belgium).  During her career she’s been involved in multiple projects including two FP7 projects – INFORM (Improved monitoring and forecasting of ecological status of European Inland waters by combining Future earth ObseRvation data and Models) and HIGHROC (High Spatial and Temporal Resolution Ocean Colour coastal water products and services) – Belspo funded projects including REMEDY (Remote Monitoring of tropical Ecosystem Dynamics) and DRONESED (Dronese-based Sediment Mapping for Dredging Operations) as well as the ESA PV-LAC project (Advanced Land, Aerosol and Coastal products for Proba-V).

Mr. Robrecht Moelans: Robrecht is working with VITO as R&D Professional in processing drone and satellite images for water & coastal applications. Before VITO, Robrecht worked as R&D Project Manager with G-tec in Liège, Belgium and as Operational Superintendent (expat) with dredging company Jan De Nul. He is holding a Master’s degree in Mining and Geotechnical Engineering from Katholieke Universiteit Leuven.

Video     Chat Transcript      Nechad et al (2009) TSM methodology


Title: Satellite-based UNESCO World Water Quality Portal: Monitoring freshwater quality from space using Earth Observation 
 
Presenter: Sarantuyaa Zandaryaa, Programme Specialist, Division of Water Sciences – Intergovernmental Hydrological Programme (IHP), UNESCO
 
Date:   January 9, 2020, 2pm UTC
 
Abstract:  Water quality information is essential for the Sustainable Development Goals (SDGs) implementation and monitoring. However, data on freshwater quality are scarce at the global, regional and national levels, due to the lack of monitoring networks and capacity. In particular, reliable data on water quality is scarce, or non-existent, in remote areas and developing countries. Innovative approaches such as using Earth Observation (EO) and satellite images can enhance global water quality data.
The webinar aims to demonstrate and enhance awareness on the use of EO for inland freshwater quality monitoring, by presenting the application of satellite-based UNESCO World Water Quality in demonstration basins in different regions of the world.
Under the International Initiative on Water Quality of UNESCO’s Intergovernmental Hydrological Programme, UNESCO has developed a pioneering satellite-based UNESCO World Water Quality Portal with the aim to enhance data and knowledge on freshwater water quality at the global level. The UNESCO Portal provides open access information on freshwater quality at scales from global to basin using remote sensing data (i.e, satellite images).
The UNESCO Portal provides data on five key indicators of the state of water quality: turbidity and sedimentation distribution, chlorophyll-a, Harmful Algal Blooms (HAB), organic absorption and surface temperature. These indicators also provide information on the impact of other sectors and land uses such as urban areas, fertilizer use in agriculture, climate change or dam and reservoir management. For example, tracking changes in turbidity (the degree to which light is backscattered by particles in the water) is useful when monitoring sediment plumes from dredging and dumping activities. Chlorophyll-a is a pigment found in phytoplankton cells, while the HAB indicator shows possible areas affected by harmful algae blooms formed by cyanobacteria containing phycocyanin. The UNESCO Portal uses satellite-derived optical data from Landsat and Sentinel-2 satellites, which are open access.
The UNESCO World Water Quality Portal addresses an urgent need to enhance the knowledge base and access to information in order to better understand the impacts of climate- and human-induced change on water security. It will facilitate science-based, informed decision-making for water management and support Member States’ efforts in implementing the SDG 6, as well as several other Goals and Targets that are linked directly to water quality and water pollution.
The UNESCO Portal allows everyone with open access to information on water quality in every part of the world and thus supports information and knowledge for all, leaving no one behind.
 
Speaker Bio: Sarantuyaa Zandaryaa  has a postdoctoral degree on Environment and Sustainable Development from United Nations University in Japan and a doctoral degree on Environmental Engineering from University of Rome ‘La Sapienza’ in Italy. She also has a postgraduate diploma on International Environmental Law-making and Diplomacy.
 

Sarantuyaa coordinates the UNESCO-IHP’s International Initiative on Water Quality (IIWQ) and leads IHP activities on water quality and wastewater. She has developed several UNESCO projects on emerging issues and innovative approaches to water quality such as: satellite-based water quality monitoring; emerging pollutants; nature-based solutions to water quality; and climate change and water quality. She has developed the concept of the satellite-based UNESCO World Water Quality Portal to enhance open access water quality data at the global level.

Between 2007 and 2015, Sarantuyaa was responsible for UNESCO-IHP’s urban water activities, implemented IHP projects on integrated urban water management, and coordinated the publication of UNESCO Urban Water Series, comprising eight major books. Sarantuyaa has published numerous research and policy publications (books, research journal papers, technical reports, policy reports, etc.) and has contributed as lead author of chapters in UNESCO-EOLLS Encyclopedia and United Nations World Water Development Reports.

Video (webinar starts at 3 minute mark) and Chat 


Title:  National Ecological Observatory Network: Open data for ecological research and monitoring from across the US

Presenters:  Battelle Ecology’s Bobby Hensley (Research Scientist, Aquatic Ecology) and Tristen Goulden (Lead Research Scientist, Remote Sensing)

Date: Nov. 21, 2pm UTC
 

Abstract:  The National Science Foundation’s National Ecological Observatory Network (NEON) is an ecological observation facility, funded by US’s National Science Foundation. NEON collects and provides open data from 81 field sites across the United States that characterize and quantify how the nation’s ecosystems are changing. The observatory includes 81 field sites (47 terrestrial and 34 aquatic) located in different ecosystems across the United States (including Alaska, Hawaii and Puerto Rico). Data collection methods are standardized across sites and include automated instrument measurements, observational field sampling, and airborne remote sensing surveys. This webinar will provide an introduction to NEON and the over 175 data products with an emphasis on the aquatics and remote sensing data and infrastructure. More about the NEON program can be found at www.neonscience.org.

Presenter Bios:
Bobby Hensley, NEON Research Scientist – Aquatic Ecology
Bobby is an aquatic biogeochemist on the Aquatic Instruments science team.  He has a background in using in-situ sensors to understand controls on stream metabolism and nutrient spiraling.  He received his Ph.D. from the University of Florida.

Tristan Goulden, NEON Lead Research Scientist – Remote Sensing
Tristan is a remote sensing scientist with NEON specializing in LiDAR. He also co-lead NEON’s Remote Sensing Integrated Product Team which focusses on developing algorithms and associated documentation for all of NEON’s remote sensing data products. His past research focus has been on characterizing uncertainty in LiDAR observations/processing and propagating the uncertainty into downstream data products. His past experience in LiDAR has included all aspects of the LIDAR workflow including; mission planning, airborne operations, processing of raw data, and development of higher level data products.

Aquatic Ecology Slides (Coming Soon) Remote Sensing Slides.    Chat      Video (NOTE:webinar starts at 22 minute mark)



 
Title: CyAN App
 
Date: 24 July 2019, 18:00UTC
 

This webinar Early Detection of Algal Blooms in the US Freshwater Systems: Using the CyAN Mobile App will be presented by Dr. Blake Schaeffer, Dr. Robyn Conmy, and other scientists from the United States Environmental Protection Agency.

Download the CyAN mobile app.  SlidesRecording.



Title: The Online Cyanobacteria Warning and Information Service from Satellite Remote Sensing  

Date: 4 April 2019, 14:00 UTC  

This webinar was presented by Dr. Mark Matthews, founder and Director of CyanoLakes(Pty) Ltd, a commercial earth observation service provider.  Dr. Matthews specialised in bio-optical remote sensing of cyanobacteria blooms and their detection from space. He graduated from the University of Cape Town in 2014 with a thesis entitled “distinguishing cyanobacteria from algae using bio-optical remote sensing”. He has published several papers in internationally recognised journals in the field, and is the author of the chapter on bio-optical modelling of chlorophyll-a in the textbook “Bio-optical modelling and remote sensing of inland waters”. Since graduating he has led several projects funded by the Water Research Commission in South Africa and the European Commission’s Horizon 2020 programme. He founded CyanoLakes (Pty) Ltd in 2015 after winning the Copernicus Masters Ideas Challenge for best business idea for earth observation data. As the director of CyanoLakes (Pty) Ltd he is passionate about bringing the benefits of earth observation innovations to governmental water and health authorities, utilities and industry around the world through CyanoLakes’s online public health information service offering.
                                            *******************************

Abstract: At CyanoLakes we help water utilities and government agencies monitor toxin producing cyanobacteria blooms in their source waters, helping them use their limited resources more effectively and become more informed and responsive. During this talk we will discover how water utilities and government authorities can use CyanoLakes paid services to enhance and supplement their ongoing monitoring programs.

Recording: Video Q&A Chatfile


Title: Why a new generation of EO sensors for water quality needs a new generation of in situ validation instruments?
 
 
Date: 31 January 2019, 14:00 UTC
 
 
This webinar will be presented by Dr. Marnix Laanen, co-founder and co-owner of Water Insight, an SME dedicated to water quality remote sensing using both image data and close sensing in situ spectrometers based in Wageningen, The Netherlands. He has a PhD. in Earth and Life Sciences from the Vrije Universteit of Amsterdam specialising in the retrieval of Coloured Dissolved Organic Matter from close sensing spectra validated by laboratory in situ sampling. Within Water Insight Marnix is involved in various H2020 projects and in the optical instrument development (both WISP-3 and WISPstation).
                                              *******************************
 
Abstract:  With the launch of the Sentinel 2 and 3 satellites a new generation of EO sensors is commissioned. However, the use of the current in situ validation instruments for these new sensors might not suffice for a number of reasons, especially for water quality retrieval. The atmospheric correction methods for S2 and S3 over surface water are still in development and is troublesome for S2 (as having a band setting primarily for land applications). In this webinar we will explore the requirements for a new generation of in situ optical instruments for S2 and S3 sensor validation.

Recording:         Video       Q&A Chatfile


GEMS/Water: Evolving a Global Long-term Water Quality Data Repository
27 September 2018
This webinar, coauthored by Philipp Saile (Hydrologist, Coordinator), was presented by Dmytro Lisniak (Hydrologist, Data Analyst) of the GEMS/Water Data Centre, operated by the International Centre for Water Resources and Global Change (ICWRGC), German Federal Institute of Hydrology.
 Abstract: The Global Environment Monitoring System for freshwater (GEMS/WATER) was the first programme of its kind to address global issues of water quality through a network of monitoring stations in rivers, lakes, reservoirs and groundwater on a global scale. Technical cooperation with developing countries was the main focus of GEMS/WATER during its first phase. The program has contributed to the establishment and expansion of national water quality monitoring systems in many countries. Current engagements focus on increasing the availability and promoting the shared access to quality assured data that serves as a base for evidence informed decision making, the facilitation of quality assessments to inform policy makers and the support of work on indicators for the Sustainable Development Goals. In order to provide the information and knowledge base for the development and implementation of policies and sustainable management of freshwater ecosystems worldwide, the GEMS/WATER programme is evolving into an open, collaborative water quality data, information and knowledge hub.
Recording: video     audio     Q&A chatfile
 

__________________________________________________

Special Horizon2020 Monocle/GEO AquaWatch co-hosted webinar!

Sustainability of Future Environmental Observation Networks

24 October 2018 

For this seminar, invited speakers/panellists were MONOCLE Expert Advisory Board members Debbie Chapman (University College Cork and UN Environment GEMS/Water), Henrik Steen Andersen (European Environment Agency) and Steve Greb (GEO AquaWatch,University of Wisconsin-Madison) and MONOCLE contributors, Kathrin Poser (Water Insight,WP5 lead) and Oliver Clements (PML).

Abstract: The third MONOCLE webinar in the series addresses sustainability of environmental monitoring networks, in particular hybrid services of in situ and satellite observation networks. How do we safeguard long-term measurement series while sensor technology continues to improve? How should data collection be funded to be sustainable? How should a multi-scale observation network feed into regional and global reporting strategies?

An overview on current water quality monitoring policy and challenges will be presented, including discussion of how MONOCLE research may contribute to reaching the European and global monitoring goals.

Recording: Video

__________________________________________________
 
CyanoAlert – Space based cyanobacteria information & services
 
 27 November 2018
 
 This webinar will be presented by Petra Philipson, PhD in aquatic remote
 sensing and remote sensing consultant since 2003. Co-founder, vice manager
 and consultant at Brockmann Geomatics since 2011, with personal interest and
 focus on aquatic national, European and global assignments and research and
 development projects.
 
 Abstract: CyanoAlert is a three-year project funded by the European Commission ending in spring 2020 (www.cyanoalert.com). The project aims to provide customers in government, commercial and environmental sectors with up-to-date, accurate and relevant information on the health risks posed by cyanobacteria blooms in water bodies through utilising Copernicus Satellite Earth Observation data. The service will offer weekly updates, forecasts, and near real-time information on cyanobacteria blooms and eutrophication (chlorophyll-a) through its service portal and mobile application. The webinar is a presentation of on-going project activities and results achieved so far.
 

Recording: Video  Audio Chat

Copy link
Powered by Social Snap